On Partitions of Unity Property of Nodal Shape Functions: Rigid-Body-Movement Reproduction and Mass Conservation

This paper discusses the Partitions of Unity (PU) property that is one of the most important properties of nodal shape functions used in various numerical methods via discretization, including element-based and/or meshfree methods, such as FEM, S-FEM, S-PIM, EFG, XFEM, etc. The significance of the PU property and the possible consequences of using shape functions that do not possess the PU property in a numerical method are examined in theory. It proves that the PU property is a necessary (not sufficient in general) condition to enable the basic feature of rigid-body-movement production for static problems, and it is both necessary and sufficient condition mass conservation for dynamic problems for solids. This paper offers a fundamental insight into the lack of essential solution properties when formulating a computational method based on discretization techniques with shape functions that do not possess the PU property.

[1]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[2]  G. Liu,et al.  Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves , 2012 .

[3]  Guiyong Zhang,et al.  An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements , 2011 .

[4]  Gui-Rong Liu,et al.  A gradient smoothing method (GSM) for fluid dynamics problems , 2008 .

[5]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[6]  Guirong Liu,et al.  A Node-based Smoothed Point Interpolation Method (NS-PIM) for Three-dimensional Thermoelastic Problems , 2008 .

[7]  Guirong Liu,et al.  A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method , 2009 .

[8]  E. R. A. Oliveira Theoretical foundations of the finite element method , 1968 .

[9]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[10]  Guirong Liu,et al.  A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements , 2008 .

[11]  Zhi Zong,et al.  AN OVERVIEW ON SMOOTHED PARTICLE HYDRODYNAMICS , 2008 .

[12]  Guirong Liu,et al.  EDGE-BASED SMOOTHED POINT INTERPOLATION METHODS , 2008 .

[13]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[14]  K. Y. Dai,et al.  Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .

[15]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[16]  K. Y. Dai,et al.  Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method , 2007 .

[17]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems , 2010 .

[18]  Gui-Rong Liu,et al.  A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis , 2006 .

[19]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[20]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[21]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems , 2009 .

[22]  Guirong Liu A GENERALIZED GRADIENT SMOOTHING TECHNIQUE AND THE SMOOTHED BILINEAR FORM FOR GALERKIN FORMULATION OF A WIDE CLASS OF COMPUTATIONAL METHODS , 2008 .

[23]  Guirong Liu ON G SPACE THEORY , 2009 .

[24]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[25]  Guiyong Zhang,et al.  A novel singular node‐based smoothed finite element method (NS‐FEM) for upper bound solutions of fracture problems , 2010 .

[26]  Guirong Liu,et al.  Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC‐PIM) , 2008 .

[27]  Aiguo Cheng,et al.  Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method , 2010 .

[28]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[29]  Ted Belytschko,et al.  Regularization of material instabilities by meshfree approximations with intrinsic length scales , 2000 .

[30]  K. Y. Dai,et al.  A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .

[31]  Guirong Liu,et al.  A face‐based smoothed finite element method (FS‐FEM) for 3D linear and geometrically non‐linear solid mechanics problems using 4‐node tetrahedral elements , 2009 .

[32]  J. Monaghan Why Particle Methods Work , 1982 .

[33]  Guirong Liu,et al.  A singular cell-based smoothed radial point interpolation method for fracture problems , 2011 .

[34]  Gui-Rong Liu,et al.  A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis , 2007 .

[35]  Guirong Liu,et al.  A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems , 2013 .

[36]  Guangyao Li,et al.  A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems , 2007 .

[37]  K. Y. Dai,et al.  A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .

[38]  Lei Chen,et al.  A singular ES-FEM for plastic fracture mechanics , 2011 .

[39]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[40]  Guirong Liu,et al.  Immersed smoothed finite element method for two dimensional fluid–structure interaction problems , 2012 .

[41]  G. Y. Li,et al.  THE UPPER BOUND PROPERTY FOR SOLID MECHANICS OF THE LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD (LC-RPIM) , 2007 .

[42]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[43]  Lei Chen,et al.  A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media , 2011 .

[44]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .