Modeling adoptions and the stages of the diffusion of innovations

Understanding the dynamics underlying the diffusion of new ideas or technology in a society is an important task with implications for sciences such sociology and economics, as well as important business applications, especially in marketing. In this article, we take a first step in this direction, by studying the problem of how to model, in a simple and useful abstraction, the complex process of innovation diffusion. Our unique input is a database of adoptions $$\mathbb {D}$$D, which is a relation (User,Item,Time) where a tuple $${\left\langle u, i, t\right\rangle } \in \mathbb {D}$$u,i,t∈D indicates that the user u adopted the item i at time t. For our aim, we propose a stochastic model which decomposes a diffusion trace (i.e., the sequence of adoptions of the same item i) in an ordered sequence of stages, where each stage is intuitively built around two dimensions: users and relative speed at which adoptions happen. Each stage is characterized by a specific rate of adoption and it involves different users to different extent, while the sequentiality in the diffusion is guaranteed by constraining the transition probabilities among stages. An empirical evaluation on synthetic and real-world adoption datasets shows the effectiveness of the proposed framework in summarizing the adoption process, enabling several analysis tasks such as the identification of adopter categories, clustering and characterization of diffusion traces, and prediction of which users will adopt an item in the next future.

[1]  Francesco Bonchi,et al.  Influence Propagation in Social Networks: A Data Mining Perspective , 2011, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[2]  James Allan,et al.  Automatic generation of overview timelines , 2000, SIGIR '00.

[3]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[4]  Stephen E. Levinson,et al.  Continuously variable duration hidden Markov models for automatic speech recognition , 1986 .

[5]  Virgílio A. F. Almeida,et al.  Finding trendsetters in information networks , 2012, KDD.

[6]  Rediet Abebe Can Cascades be Predicted? , 2014 .

[7]  James Allan,et al.  Extracting significant time varying features from text , 1999, CIKM '99.

[8]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[9]  Nick Koudas,et al.  TwitterMonitor: trend detection over the twitter stream , 2010, SIGMOD Conference.

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  R. Bakis Continuous speech recognition via centisecond acoustic states , 1976 .

[12]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[13]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.

[14]  Jie Tang,et al.  Citation count prediction: learning to estimate future citations for literature , 2011, CIKM '11.

[15]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, SKDD.

[16]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[17]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[18]  Lyle Ungar,et al.  Discovery of significant emerging trends , 2010, KDD.

[19]  Laura Firoiu,et al.  Clustering Time Series with Hidden Markov Models and Dynamic Time Warping , 1999 .

[20]  Divyakant Agrawal,et al.  Diffusion of Information in Social Networks: Is It All Local? , 2012, 2012 IEEE 12th International Conference on Data Mining.

[21]  Masahiro Kimura,et al.  Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis , 2009, ACML.

[22]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[23]  Yiming Yang,et al.  A study of retrospective and on-line event detection , 1998, SIGIR '98.

[24]  Xueqi Cheng,et al.  Popularity prediction in microblogging network: a case study on sina weibo , 2013, WWW.

[25]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[26]  Aristides Gionis,et al.  The early-adopter graph and its application to web-page recommendation , 2012, CIKM '12.

[27]  Nicola Barbieri,et al.  Cascade-based community detection , 2013, WSDM.

[28]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[29]  Rossano Schifanella,et al.  The role of information diffusion in the evolution of social networks , 2013, KDD.

[30]  Lada A. Adamic,et al.  Tracking information epidemics in blogspace , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  Gao Cong,et al.  On predicting the popularity of newly emerging hashtags in Twitter , 2013, J. Assoc. Inf. Sci. Technol..

[33]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[34]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[35]  Nicola Barbieri,et al.  Topic-aware social influence propagation models , 2012, Knowledge and Information Systems.

[36]  Jon M. Kleinberg,et al.  Bursty and Hierarchical Structure in Streams , 2002, Data Mining and Knowledge Discovery.

[37]  Lada A. Adamic,et al.  Social influence and the diffusion of user-created content , 2009, EC '09.

[38]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[39]  Yasir Mehmood,et al.  CSI: Community-Level Social Influence Analysis , 2013, ECML/PKDD.

[40]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[41]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[42]  Albert-László Barabási,et al.  Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes , 2014, AAAI.

[43]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[44]  Le Song,et al.  Scalable Influence Estimation in Continuous-Time Diffusion Networks , 2013, NIPS.