Optimasi Koloni Semut Fuzzy Multi Objektif Untuk Pencarian Jalur Pasok Bioenergi Berbasis Kelapa Sawit

Abstrak Pada dasarnya, model berbasis Optimasi Koloni Semut mampu melakukan pencarian jalur terbaik yang hanya memiliki satu tujuan saja. Keadaan itu sangatlah sulit untuk diadaptasi dan diimplementasikan, karena di kasus sesungguhnya, jalur pasok memiliki tujuan yang lebih dari satu, atau disebut dengan multi objektif. Berarti, harus ada perbaikan pada metode Optimasi Koloni Semut, baik berbasis fuzzy atau non-fuzzy, menjadi Optimasi Koloni Semut Multi Objektif. Tujuan dari makalah ini adalah untuk memperbaiki metode Optimasi Koloni Semut Fuzzy menjadi Optimasi Koloni Semut Multi Objektif. Metode ini diimplementasikan pada kasus pencarian jalur teroptimum untuk rantai pasok energi berbasis kelapa sawit. Hasil pencarian jalur teroptimum menunjukkan bahwa jalur tersebut memiliki nilai optimum sebesar 70,676. Selain itu, metode telah diverifikasi dan validasi dengan sekumpulan data asli. Kata kunci: optimasi koloni semut, fuzzy, multi objektif Abstract Indeed , the ant colony optimization based model could search the best path that has only one path objective. It would be difficult to be adopted and implemented , because in the real case, the supply path has multi objectives. It is a need to improve the ant colony optimization for multiobjectives case. The objective of this paper is improve the ant colony optimization for solving multi objectives based supply path problem by using fuzzy ant colony optimization. The developed multi objectives fuzzy ant colony optimization was used tosearch the optimum path of palm oil based bioenergy supply chain that has 70,676 performance value . The method was validated and verified with a real data set and the finding was analyzed and discussed. Keywords : multi objectives fuzzy ant colony optimization, supply path searching, palm oil based bioenergy supply chain .

[1]  E. L. Nichols,et al.  Introduction to Supply Chain Management , 1998 .

[2]  M. Dorigo,et al.  ACO/F-Race: Ant Colony Optimization and Racing Techniques for Combinatorial Optimization Under Uncertainty , 2005 .

[3]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[4]  Lotfi A. Zadeh,et al.  A fuzzy-algorithmic approach to the definition of complex or imprecise concepts , 1976 .

[5]  Mostafa Fathi Ganji,et al.  Using fuzzy ant colony optimization for diagnosis of diabetes disease , 2010, 2010 18th Iranian Conference on Electrical Engineering.

[6]  S. Brailsford,et al.  Optimal screening policies for diabetic retinopathy using a combined discrete-event simulation and ant colony optimization approach , 2005 .

[7]  Philip M. Kaminsky,et al.  Designing and managing the supply chain : concepts, strategies, and case studies , 2007 .

[8]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Walter J. Gutjahr,et al.  A Converging ACO Algorithm for Stochastic Combinatorial Optimization , 2003, SAGA.

[10]  A A Alsawy,et al.  Fuzzy-based ant colony optimization algorithm , 2010, 2010 2nd International Conference on Computer Technology and Development.

[11]  Marco Dorigo,et al.  Ant colony optimization , 2006, IEEE Computational Intelligence Magazine.

[12]  Mohammad Saniee Abadeh,et al.  Using fuzzy ant colony optimization for diagnosis of diabetes disease , 2010, ICEE 2010.

[13]  W. Gutjahr On the Finite-Time Dynamics of Ant Colony Optimization , 2006 .

[14]  Juing-Shian Chiou,et al.  The optimization of the application of fuzzy ant colony algorithm in soccer robot , 2009, 2009 International Conference on Information and Automation.

[15]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[16]  Gadadhar Sahoo,et al.  Ant colony based hybrid optimization for data clustering , 2007, Kybernetes.

[17]  Robert Rosenbaum,et al.  Supply chain excellence : a handbook for dramatic improvement using the SCOR model , 2007 .

[18]  Shi-yong Li,et al.  Improved Ant Colony Algorithm with Emphasis on Data Processing and Dynamic City Choice , 2009, 2009 International Conference on Information Engineering and Computer Science.

[19]  Andries Petrus Engelbrecht,et al.  A fuzzy ant colony optimization algorithm for topology design of distributed local area networks , 2008, 2008 IEEE Swarm Intelligence Symposium.

[20]  M.M. Goswami,et al.  Fuzzy Ant Colony Based Routing Protocol for Mobile Ad Hoc Network , 2009, 2009 International Conference on Computer Engineering and Technology.

[21]  Rasoul Khayati,et al.  Retina Vessel Detection Using Fuzzy Ant Colony Algorithm , 2010, 2010 Canadian Conference on Computer and Robot Vision.