Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes

[1]  A. Magnani,et al.  A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  Yurina Sekine,et al.  Structure and dynamics of water in mixed solutions including laponite and PEO. , 2011, The Journal of chemical physics.

[3]  Li‐Ming Zhang,et al.  Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles. , 2010, Colloids and surfaces. B, Biointerfaces.

[4]  M. Darder,et al.  Hybrid materials based on clays for environmental and biomedical applications , 2010 .

[5]  Masaru Yoshida,et al.  High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder , 2010, Nature.

[6]  E. Pollet,et al.  Progress in nano-biocomposites based on polysaccharides and nanoclays , 2009 .

[7]  Qingsong Zhang,et al.  Preparation and performance of nanocomposite hydrogels based on different clay. , 2009 .

[8]  N. Kim,et al.  Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite , 2009 .

[9]  G. Schmidt,et al.  Thermosensitive and dissolution properties in nanocomposite polymer hydrogels. , 2009, Macromolecular rapid communications.

[10]  X. Yang,et al.  A novel cellulose hydrogel prepared from its ionic liquid solution , 2009 .

[11]  J. Kim,et al.  Synthesis and electrorheological response of nano-sized laponite stabilized poly(methyl methacrylate) spheres , 2009 .

[12]  Alessandro Sannino,et al.  Biodegradable Cellulose-based Hydrogels: Design and Applications , 2009, Materials.

[13]  G. Helgesen,et al.  Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites , 2009 .

[14]  Xiaobo Hu,et al.  Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility , 2008 .

[15]  Xin Chen,et al.  Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. , 2008, Biomacromolecules.

[16]  A. Magnin,et al.  Micron-scale origin of the shear-induced structure in Laponite–poly(ethylene oxide) dispersions , 2008 .

[17]  Lichen Yin,et al.  Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. , 2007, Biomaterials.

[18]  Vikram K. Daga,et al.  Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)–water solutions , 2006 .

[19]  J. Tarascon,et al.  Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon , 2005 .

[20]  Y. Mugnier,et al.  Lithium iodate nanocrystals in Laponite matrix for nonlinear optical applications , 2004 .

[21]  M. Morita,et al.  Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte , 2003 .

[22]  E. Pefferkorn,et al.  Aggregation of laponite in the presence of magnesium ions and polyacrylic acid , 2001 .

[23]  M. Paoli,et al.  Flexible electrochromic windows: a comparison using liquid and solid electrolytes , 1999 .

[24]  V. Berbenni,et al.  On the role of lithium carbonate in the preparation of doped nickel oxide cathodes for molten carbonate fuel cells , 1990 .