Quantum graph walks I: mapping to quantum walks

We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.

[1]  U. Smilansky,et al.  Quantum graphs: Applications to quantum chaos and universal spectral statistics , 2006, nlin/0605028.

[2]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[3]  Uzy Smilansky,et al.  Periodic Orbit Theory and Spectral Statistics for Quantum Graphs , 1998, chao-dyn/9812005.

[4]  Norio Konno,et al.  Localization of an inhomogeneous discrete-time quantum walk on the line , 2009, Quantum Inf. Process..

[5]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[6]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[7]  M. SIAMJ.,et al.  ON THE DIGRAPH OF A UNITARY MATRIX∗ , 2003 .

[8]  Etsuo Segawa,et al.  Limit measures of inhomogeneous discrete-time quantum walks in one dimension , 2011, Quantum Inf. Process..

[9]  Stanley Gudder,et al.  Realistic quantum probability , 1988 .

[10]  Etsuo Segawa,et al.  Localization of quantum walks induced by recurrence properties of random walks , 2011, 1112.4982.

[11]  W. Marsden I and J , 2012 .

[12]  Simone Severini,et al.  A Matrix Representation of Graphs and its Spectrum as a Graph Invariant , 2006, Electron. J. Comb..

[13]  F. A. Grunbaum,et al.  Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.

[14]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[15]  Gregor Tanner,et al.  From quantum graphs to quantum random walks , 2006 .

[16]  Petr Šeba,et al.  Free quantum motion on a branching graph , 1989 .

[17]  Schanz,et al.  Periodic-orbit theory of anderson localization on graphs , 1999, Physical review letters.

[18]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[19]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[20]  Volkher B. Scholz,et al.  Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.

[21]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[22]  Alain Joye,et al.  Dynamical Localization of Quantum Walks in Random Environments , 2010, 1004.4130.

[23]  Norio Kawakami,et al.  Topological phases and delocalization of quantum walks in random environments , 2011, 1103.5545.

[24]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.