Error-source effects on the performance of direct and iterative algorithms on an optical matrix-vector processor
暂无分享,去创建一个
[1] T. Jenkins. Optical sensing techniques and signal processing , 1987 .
[2] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[3] J. Palais,et al. Fiber Optic COMMUNICATIONS , 1992 .
[4] D. Young,et al. A Survey of Numerical Mathematics , 1988 .
[5] D Casasent,et al. Banded-matrix high-performance algorithm and architecture. , 1985, Applied optics.
[6] D P Casasent,et al. Effects of error sources on the parallelism of an optical matrix-vector processor. , 1990, Applied optics.
[7] David Casasent,et al. Direct finite element solution on an optical laboratory matrix-vector processor , 1988 .
[8] T. Chung,et al. Finite Element Analysis in Fluid Dynamics , 1978 .
[9] P. Kellman,et al. Integrating acousto-optic channelized receivers , 1981, Proceedings of the IEEE.
[10] Demetri Psaltis,et al. Accurate Numerical Computation By Optical Convolution , 1980, Other Conferences.
[11] D Casasent,et al. Negative base encoding in optical linear algebra processors. , 1986, Applied optics.
[12] D P Casasent,et al. Error-source effects in a high-accuracy optical finite-element processor. , 1986, Applied optics.
[13] G. Keiser. Optical Fiber Communications , 1983 .
[14] Earl E. Swartzlander. The Quasi-Serial Multiplier , 1973, IEEE Transactions on Computers.
[15] D Casasent,et al. Optical linear algebra processors: noise and error-source modeling. , 1985, Optics letters.
[16] David Casasent,et al. Time And Space Integrating Optical Laboratory Matrix-Vector Array Processor , 1986, Optics & Photonics.