Procedural and Conceptual Knowledge: Exploring the Gap Between Knowledge Type and Knowledge Quality

Following Star (2005, 2007), we continue to problematize the entangling of type and quality in the use of conceptual knowledge and procedural knowledge. Although those whose work is guided by types of knowledge and those whose work is guided by qualities of knowledge seem to be referring to the same phenomena, actually they are not. This lack of mutual understanding of both the nature of the questions being asked and the results being generated causes difficulties for the continued exploration of questions of interest in mathematics teaching and learning, such as issues of teachers’ knowledge.RésuméDans la lignée de Star (2005, 2007), nous continuons de problématiser l’absence de distinction entre type et qualité lorsqu’il est question de connaissance des concepts et des procédures. Bien que ceux dont les travaux se fondent sur les types of connaissances et ceux dont les travaux se fondent sur les qualités des connaissances semblent faire référence aux mêmes phénomènes, ce n’est pas le cas en réalité. Le manque de compréhension réciproque, aussi bien de la nature des questions posées que des résultats obtenus, cause des difficultés pour l’exploration de questions importantes en enseignement et en apprentissage des mathématiques, par exemple la question des connaissances des enseignants.

[1]  Andreas J. Stylianides Proof and Proving in School Mathematics , 2007 .

[2]  J. Hiebert,et al.  Conceptual and Procedural Knowledge in Mathematics: An Introductory Analysis , 1986 .

[3]  J. Star Reconceptualizing procedural knowledge. , 2005 .

[4]  Carol G. Williams,et al.  Using Concept Maps to Assess Conceptual Knowledge of Function , 1998 .

[5]  Eddie Gray,et al.  Duality, Ambiguity and Flexibility: A Proceptual View of Simple Arithmetic , 1994 .

[6]  Linda A. Bolte Using Concept Maps and Interpretive Essays for Assessment in Mathematics , 1999 .

[7]  G. Hatano,et al.  TWO COURSES OF EXPERTISE , 1984 .

[8]  Klaus Hasemann,et al.  Concept mapping in research on mathematical knowledge development: Background, methods, findings and conclusions , 1995 .

[9]  A. Sfard On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin , 1991 .

[10]  James P. Byrnes,et al.  Role of Conceptual Knowledge in Mathematical Procedural Learning , 1991 .

[11]  Kathleen A. Cramer,et al.  Efficacy of Different Concrete Models for Teaching the Part-Whole Construct for Fractions , 2009 .

[12]  E. Paul Goldenberg,et al.  Students' understanding of the notion of function in dynamic geometry environments , 1997, Int. J. Comput. Math. Learn..

[13]  Anthonius J.M. de Jong,et al.  Types and qualities of knowledge , 1993 .

[14]  Andreas J. Stylianides,et al.  Mathematics for teaching: A form of applied mathematics , 2010 .

[15]  B. Rittle-Johnson,et al.  Conceptual and procedural knowledge of mathematics: Does one lead to the other? , 1999 .

[16]  R. Glaser The maturing of the relationship between the science of learning and cognition and educational practice , 1991 .

[17]  B. Rittle-Johnson,et al.  Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process. , 2001 .

[18]  Andreas J. Stylianides,et al.  Facilitating the Transition from Empirical Arguments to Proof. , 2009 .

[19]  James Hiebert Missing Links@@@Conceptual and Procedural Knowledge: The Case of Mathematics , 1987 .

[20]  Joanna O. Masingila,et al.  Examining the effects of writing on conceptual and procedural knowledge in calculus , 2000 .

[21]  Michael Schneider,et al.  Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. , 2011, Developmental psychology.

[22]  William A. Brownell When is Arithmetic Meaningful , 1945 .

[23]  Melvin R. Wilson One Preservice Secondary Teacher's Understanding of Function: The Impact of a Course Integrating Mathematical Content and Pedagogy. , 1994 .

[24]  J. Star Research Commentary: A Rejoinder Foregrounding Procedural Knowledge. , 2007 .

[25]  B. Rittle-Johnson,et al.  Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. , 2007 .

[26]  Kyeong Hah Roh Students’ images and their understanding of definitions of the limit of a sequence , 2008 .

[27]  R. Skemp Relational Understanding and Instrumental Understanding. , 2006 .

[28]  R. Zazkis,et al.  Contingency in the Mathematics Classroom: Opportunities Taken and Opportunities Missed , 2013 .