NEDD4 activates mitophagy by interacting with LC3 to restrain reactive oxygen species and apoptosis in Apostichopus japonicus challenged with Vibrio splendidus.

[1]  Cheng-hua Li,et al.  Choline dehydrogenase interacts with SQSTM1 to activate mitophagy and promote coelomocyte survival in Apostichopus japonicus following Vibrio splendidus infection , 2023, Zoological research.

[2]  H Zhao,et al.  Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson’s disease, with insights into Pink1 knockout models , 2023, Zoological research.

[3]  Cheng-hua Li,et al.  ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection , 2022, Zoological research.

[4]  Lingling Wang,et al.  A HECT domain ubiquitin ligase CgWWP1 regulates granulocytes proliferation in oyster Crassostrea gigas. , 2021, Developmental and comparative immunology.

[5]  P. Héroux,et al.  Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity , 2020, Redox biology.

[6]  M. Guo,et al.  Hypoxia-inducible factor-1α shifts metabolism from oxidative phosphorylation to glycolysis in response to pathogen challenge in Apostichopus japonicus , 2020 .

[7]  O. Kepp,et al.  Mitophagy, Mitochondrial Homeostasis, and Cell Fate , 2020, Frontiers in Cell and Developmental Biology.

[8]  K. Macleod Mitophagy and Mitochondrial Dysfunction in Cancer , 2020, Annual Review of Cancer Biology.

[9]  Z. Dong,et al.  Activation of BNIP3-mediated mitophagy protects against renal ischemia–reperfusion injury , 2019, Cell Death & Disease.

[10]  Q. Lei,et al.  A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases , 2019, Nature Communications.

[11]  P. Fisher,et al.  Mitochondria in Health and Disease , 2019, Cells.

[12]  Z. Ni,et al.  PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation , 2019, Redox biology.

[13]  Xiao-Ming Yin,et al.  Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys , 2019, Autophagy.

[14]  Cristina Uribe-Alvarez,et al.  On the oxidative damage by cadmium to kidney mitochondrial functions. , 2019, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[15]  Jian-Qiang Yu,et al.  Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis , 2019, Neurochemical Research.

[16]  Yibing Chen,et al.  Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression , 2019, Oncogene.

[17]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[18]  J. Ricci,et al.  No Parkin Zone: Mitophagy without Parkin. , 2018, Trends in cell biology.

[19]  S. Gorski,et al.  Diverse mechanisms of autophagy dysregulation and their therapeutic implications: does the shoe fit? , 2018, Autophagy.

[20]  Nektarios Tavernarakis,et al.  Mechanisms of mitophagy in cellular homeostasis, physiology and pathology , 2018, Nature Cell Biology.

[21]  M. Tan,et al.  Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism , 2018, Front. Immunol..

[22]  Xinnan Wang,et al.  Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models , 2018, Acta Neuropathologica.

[23]  I. Ahmad,et al.  Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. , 2017, Osteoarthritis and cartilage.

[24]  P. Devreotes,et al.  A Tunable Brake for HECT Ubiquitin Ligases. , 2017, Molecular cell.

[25]  T. Lamark,et al.  FKBP8 recruits LC3A to mediate Parkin‐independent mitophagy , 2017, EMBO reports.

[26]  Kathleen A. Durkin,et al.  Indole‐3‐carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4‐1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells , 2017, Biochemical pharmacology.

[27]  Wannian Yang,et al.  The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy , 2017, Autophagy.

[28]  P. Bernardi,et al.  Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. , 2016, Cell calcium.

[29]  E. Mills,et al.  Reprogramming mitochondrial metabolism in macrophages as an anti‐inflammatory signal , 2016, European journal of immunology.

[30]  A. Hamacher-Brady,et al.  Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy , 2015, Cellular and Molecular Life Sciences.

[31]  J. Asara,et al.  Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis , 2015, EMBO reports.

[32]  K. Macleod,et al.  Tumor suppressor functions of BNIP3 and mitophagy , 2015, Autophagy.

[33]  Akinori Eiyama,et al.  PINK1/Parkin-mediated mitophagy in mammalian cells. , 2015, Current opinion in cell biology.

[34]  Quan Chen,et al.  Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. , 2015, Biochimica et biophysica acta.

[35]  N. Chandel,et al.  ROS-dependent signal transduction. , 2015, Current opinion in cell biology.

[36]  Yuyin Li,et al.  Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy , 2015, Cell proliferation.

[37]  O. Schueler‐Furman,et al.  Versatile communication strategies among tandem WW domain repeats , 2015, Experimental biology and medicine.

[38]  Jianhua Zhang,et al.  Mitophagy mechanisms and role in human diseases. , 2014, The international journal of biochemistry & cell biology.

[39]  Yi Sun,et al.  SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization , 2014, Oncotarget.

[40]  S. Sollott,et al.  Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. , 2014, Physiological reviews.

[41]  Chenghua Li,et al.  Identification and characterization of miR-92a and its targets modulating Vibrio splendidus challenged Apostichopus japonicus. , 2014, Fish & shellfish immunology.

[42]  K. Webster Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. , 2012, Future cardiology.

[43]  Å. Gustafsson,et al.  Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control , 2012, Circulation research.

[44]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[45]  S. Rikka,et al.  Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy* , 2012, The Journal of Biological Chemistry.

[46]  R. Youle,et al.  PINK1- and Parkin-mediated mitophagy at a glance , 2012, Journal of Cell Science.

[47]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[48]  H. Stenmark,et al.  Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1 , 2011, The Biochemical journal.

[49]  H. Erdjument-Bromage,et al.  TLR signaling augments macrophage bactericidal activity through mitochondrial ROS , 2011, Nature.

[50]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[51]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[52]  M. Sudol,et al.  HECT E3 Ubiquitin Ligase Nedd4-1 Ubiquitinates ACK and Regulates Epidermal Growth Factor (EGF)-Induced Degradation of EGF Receptor and ACK , 2010, Molecular and Cellular Biology.

[53]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[54]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[55]  G. Semenza,et al.  Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia* , 2008, Journal of Biological Chemistry.

[56]  Ceshi Chen,et al.  The Nedd4-like family of E3 ubiquitin ligases and cancer , 2007, Cancer and Metastasis Reviews.

[57]  Sharad Kumar,et al.  The ubiquitin-protein ligases Nedd4 and Nedd4-2 show similar ubiquitin-conjugating enzyme specificities. , 2006, The international journal of biochemistry & cell biology.

[58]  T. Ueno,et al.  LC3 conjugation system in mammalian autophagy , 2004, The International Journal of Biochemistry & Cell Biology.

[59]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[60]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[61]  M. Nakao,et al.  Human ubiquitin‐protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin‐conjugating enzymes , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[62]  O. Staub,et al.  Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination , 1997, The EMBO journal.

[63]  N. Copeland,et al.  cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. , 1997, Genomics.

[64]  O. Staub,et al.  WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. , 1996, The EMBO journal.

[65]  S. Kumar,et al.  Identification of a set of genes with developmentally down-regulated expression in the mouse brain. , 1992, Biochemical and biophysical research communications.

[66]  N. Camougrand,et al.  Mitophagy: a process that adapts to the cell physiology. , 2013, The international journal of biochemistry & cell biology.

[67]  B. Yang,et al.  Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions , 2010, Cell Death and Differentiation.

[68]  Zhou Wei,et al.  Bacterial pathogens of skin ulceration disease in cultured sea cucumber Apostichopus japonicus(Selenka)juveniles , 2006 .

[69]  Joseph P Noel,et al.  Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. , 2003, Molecular cell.