Behandlung von Strömungsproblemen in Raketendüsen bei Überexpansion

Die vorliegende Arbeit untersucht die stromungsmechanischen Ursachen der bei Stromungsablosung in Raketendusen beobachteten Seitenkrafte und gibt Hinweise zu ihrer Quantifizierung. Zunachst werden die im Abgasstrahl von uberexpandierten Dusenstromungen auftretenden Stosmuster analysiert. In gekurzten idealen Dusen tritt wie erwartet nur die regulare oder Machreflexion des Uberexpansionsstoses an der Dusenlangsachse auf. Im Gegensatz dazu kann sich im Abgasstrahl einer schuboptimierten Duse ein drittes, bisher unbekanntes und nun als 'Kappenmuster' bezeichnetes Stosmuster einstellen, welches sich als inverse Machreflexion des in schuboptimierten Dusen erzeugten inneren Stoses deuten last. Fur den Fall der Freistrahlablosung wird ein Modell zur Bestimmung des Ablosepunktes vorgeschlagen. Es wird gezeigt, das die weniger erforschte Ablosung mit Wiederanlegen anders als bisher angenommen durch die Konturgebung der Duse bedingt ist. Sie tritt nur in schuboptimierten Dusen bei Existenz eines Kappenmusters auf, weil dieses die abgeloste Stromung in Richtung Dusenwand umlenkt und so zum Wiederanlegen fuhrt. Videoanalysen und numerische Simulationen weisen die Ablosung mit Wiederanlegen erstmals auch in Grostriebwerken nach. Beim Anfahren und Abschalten von schuboptimierten Dusen kann es zum Umschlag zwischen den beiden Ablosetypen kommen. Eigens durchgefuhrte Modellversuche zeigen, das die mit Abstand grosten Seitenkrafte im diesem Augenblick auftreten, weil der Umschlag asymmetrisch erfolgt. Seitenkraftmessungen aus Triebwerksversuchen belegen dies auch fur Grostriebwerke. Folglich konnen Seitenkrafte durch die Verwendung einer gekurzten idealen anstatt einer schuboptimierten Kontur entscheidend verringert werden, weil dadurch das Wiederanlegen der abgelosten Stromung vermieden wird. In den Modellversuchen erzeugt dementsprechend eine schuboptimierte Duse fast dreimal so hohe Seitenkrafte wie eine vergleichbare gekurzte ideale Duse. The present work investigates the aerodynamic causes of sideloads, which are observed in rocket nozzles with flow separation and takes first steps towards their quantification. First, the investigation analyses the shock patterns in the plume of overexpanded nozzle flows. As expected, only regular or Mach reflections of the overexpansion shock at the centreline occur in truncated ideal nozzles. However, in the plume of thrust-optimised nozzles a third and so far unidentified shock pattern can exist, named 'cap shock pattern' by this investigation. It can be interpreted as an inverse Mach reflection of the internal shock, inherent to thrust-optimised nozzles. A model to predict the separation location in the case of free shock separation is developed. The less investigated occurence of the restricted shock separation is other than expected due to the contouring of the nozzle. This separation type can only be found in thrust-optimised nozzles with cap shock pattern, because this pattern deflects the separated flow towards the nozzle wall and hence causes reattachment. Video analyses and numerical simulations prove for the first time the existence of restricted shock separation in full-scale rocket engines as well. At startup and shutdown of thrust-optimised nozzles, a transition between the two separation types can occur. Model tests show the greatest side loads by far are induced at this moment due to this transition occurring unsymmetrically. Side load measurements from full-scale engine tests support this finding. Hence, the magnitude of side loads can be dramatically decreased by using a truncated ideal instead of a thrust-optimised contour and thus preventing the occurence of restricted shock separation. In the model tests, a thrust-optimised nozzle experiences a side load almost three times higher than a comparable truncated ideal one.

[1]  R. Mcamis,et al.  Theoretical liquid rocket engine nozzle flow fields , 1992 .

[2]  D. Migdal,et al.  Truncated Perfect Nozzles in Optimum Nozzle Design , 1961 .

[3]  A. Herbertz,et al.  Vergleich von Konturauslegungsverfahren für konventionelle Raketenmotordüsen , 1998 .

[4]  Hans G. Hornung,et al.  Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation , 1979, Journal of Fluid Mechanics.

[5]  Maurice Tucker,et al.  Effect of a Discontinuity on Turbulent Boundary-Layer-Thickness Parameters With Application to Shock-Induced Separation , 1955 .

[6]  Gabi Ben-Dor,et al.  Shock wave reflection phenomena , 1992 .

[7]  G. H. Ratekin,et al.  Structural response of the SSME fuel feedline to unsteady shock oscillations , 1981 .

[8]  George Emanuel,et al.  Gasdynamics, theory and applications , 1986 .

[9]  Hans G. Hornung,et al.  Transition from regular to Mach reflection of shock waves Part 2. The steady-flow criterion , 1982, Journal of Fluid Mechanics.

[10]  Carl E. Campbell,et al.  Performance of Several Method-of-Characteristics Exhaust Nozzles , 1960 .

[11]  Lloyd H. Back,et al.  Shock wave/turbulent boundary-layer interactions with and without surface cooling , 1976 .

[12]  C. C. Horstman,et al.  Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows , 1987 .

[13]  Kenneth J. Plotkin,et al.  Shock wave oscillation driven by turbulent boundary layer fluctuations , 1975 .

[14]  A. L. Addy,et al.  Turbulent Boundary-Layer Properties Downstream of the Shock-Wave / Boundary-Layer Interaction , 1986 .

[15]  Luigi Crocco,et al.  THE PEAK PRESSURE RISE ACROSS AN OBLIQUE SHOCK EMERGING FROM A TURBULENT BOUNDARY LAYER OVER A PLANE SURFACE , 1954 .

[16]  J. A. Sadunas,et al.  Prediction of Nozzle Side Forces Which Occur During Staging , 1981 .

[17]  R. A. Lawrence Symmetrical and unsymmetrical flow separation in supersonic nozzles , 1967 .

[18]  S. Kalt,et al.  Conical rocket nozzle performance under flow- separated conditions , 1965 .

[19]  Kuno Foelsch,et al.  The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet , 1949 .

[20]  S. R. Chakravarthy,et al.  Numerical investigation of separated nozzle flows , 1994 .

[21]  B. W. Imrie,et al.  Compressible Fluid Flow , 1973 .

[22]  B. Launder,et al.  THE NUMERICAL COMPUTATION OF TURBULENT FLOW , 1974 .

[23]  Ludwig Prandtl,et al.  Führer durch die Strömungslehre , 1990 .

[24]  M. Holden,et al.  Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow , 1972 .

[25]  T. J. Goldberg,et al.  Turbulent-Flow Separation Criteria for Overexpanded Supersonic Nozzles , 1978 .

[26]  Shigeru Aso,et al.  Fluctuation of heat transfer in shock wave/turbulent boundary-layer interaction , 1988 .

[27]  Robert D. Tyler Pressure Rise Required for Separation in Interaction Between Turbulent Boundary Layer and Shock Wave , 1953 .

[28]  E. Spiegler,et al.  Shock-Induced Boundary Layer Separation in Over-Expanded Conical Exhaust Nozzles , 1963 .

[29]  Mehmet Erengil,et al.  Unsteady wave structure near separation in a Mach 5 compression rampinteraction , 1991 .

[30]  G. Hagemann,et al.  Nozzle flowfield analysis with particular regard to 3D-plug cluster configurations , 1996 .

[31]  Roy A. Lawrence,et al.  Factors Affecting Flow Separation in Contoured Supersonic Nozzles , 1968 .

[32]  R. J. Antl,et al.  EXPERIMENTAL STUDY OF EFFECTS OF GEOMETRIC VARIABLES ON PERFORMANCE OF CONICAL ROCKET-ENGINE EXHAUST NOZZLES , 1961 .

[33]  Frank W. Spaid,et al.  Incipient Separation of a Supersonic, Turbulent Boundary Layer, Including Effects of Heat Transfer , 1972 .

[34]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[35]  Gabi Ben-Dor,et al.  Stability of regular and Mach reflection wave configurations in steady flows , 1996 .

[36]  Charles R. Foster,et al.  Experimental Study of Gas-Flow Separation in Overexpanded Exhaust Nozzles for Rocket Motors , 1949 .

[37]  L. F. Henderson,et al.  The von Neumann paradox for the diffraction of weak shock waves , 1990, Journal of Fluid Mechanics.

[38]  M. Onofri,et al.  Viscous and Inviscid Vortex Generation During Startup of Rocket Nozzles , 1998 .

[39]  Helmut Ciezki,et al.  Investigation of the Combustion Behaviour of Solid Fuel Slabs in a Planar Step Combustor with a Colour Schlieren Technique , 1999 .

[40]  Persönliche Mitteilung , 1960, 1960.

[41]  Abdellah Hadjadj,et al.  Analyse physique et simulation numérique des écoulements compressibles. Application aux tuyères de propulseurs. (Numerical simulation of compressible flows with application to rocket nozzles) , 1997 .

[42]  J. M. Bowyer,et al.  An investigation of the side force that is sometimes observed in rocket start-up , 1978 .

[43]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[44]  Mikael Bigert,et al.  A Sub Scale Investigation on Side Loads in Sea Level Rocket Nozzles , 1999 .

[45]  D. Dolling,et al.  Unsteadiness of the Separation Shock Wave Structure in a Supersonic Compression Ramp Flowfield , 1983 .

[46]  Wolfgang Rodi,et al.  Calculation of Annular and Twin Parallel Jets Using Various Discretization Schemes and Turbulence-Model Variations , 1981 .

[47]  C. C. Horstman,et al.  Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows , 1976 .

[48]  J. M. Farley,et al.  Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles , 1960 .

[49]  Roy H Lange Present status of information relative to the prediction of shock-induced boundary-layer separation , 1954 .

[50]  G. Dumnov Unsteady side-loads acting on the nozzle with developed separation zone , 1996 .

[51]  Eric F. Spina,et al.  The Physics of Supersonic Turbulent Boundary Layers , 1994 .

[52]  G. Hagemann,et al.  Flow Separation and Side-Loads in Rocket Nozzles , 1999 .

[53]  G. Hagemann,et al.  Status of Low Separation Prediction in Rocket Nozzles. , 1998 .

[54]  A. Kistler,et al.  Fluctuating wall pressure under a separated supersonic flow , 1964 .

[55]  Alexander J. Smits,et al.  Experimental study of three shock wave/turbulent boundary layer interactions , 1987, Journal of Fluid Mechanics.

[56]  D. Dolling Unsteadiness of the shock wave structure in attached and separated compression ramp flowfields , 1983 .

[57]  G. Rao Exhaust Nozzle Contour for Optimum Thrust , 1958 .

[58]  Eugene S. Love,et al.  Experimental and Theoretical Studies of Axisymmetric Free Jets , 1959 .

[59]  Gary S. Settles,et al.  Details of a Shock-Separated Turbulent Boundary Layer at a Compression Corner , 1976 .

[60]  G. M. Elfstrom Turbulent hypersonic flow at a wedge-compression corner , 1972 .

[61]  Flint O. Thomas,et al.  On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions , 1994 .

[62]  Coleman duP. Donaldson,et al.  Study of the Pressure Rise Across Shock Waves Required to Separate Laminar and Turbulent Boundary Layers , 1952 .

[63]  G. L. Romine Nozzle flow separation , 1998 .

[64]  Awatef Hamed,et al.  Hypersonic flow separation in shock wave boundary layer interactions , 1992 .

[65]  L. H. Nave,et al.  Sea level side loads in high-area-ratio rocket engines , 1973 .

[66]  Mikhail S. Ivanov,et al.  Transition between regular and Mach reflections of shock waves in steady flows , 1997 .

[67]  Gary S. Settles,et al.  Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow , 1979 .

[68]  Otto Martin Dampf- und Gasturbinen , 1971 .

[69]  Dean R. Chapman,et al.  Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition , 1958 .

[70]  Lloyd H. Back,et al.  Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves , 1970 .

[71]  Alexander J. Smits,et al.  Turbulence structure in a shock wave/turbulent boundary-layer interaction , 1989 .

[72]  D. A. Johnson,et al.  Investigation of shock-induced separation of a turbulent boundary layer using laser velocimetry , 1976 .

[73]  J. Andreopoulos,et al.  Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows , 1987, Journal of Fluid Mechanics.

[74]  Gary S. Settles,et al.  Reynolds Number Effects on Shock-Wave Turbulent Boundary-Layer Interactions , 1977 .

[75]  Nikolaus A. Adams,et al.  Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685 , 2000, Journal of Fluid Mechanics.