Behandlung von Strömungsproblemen in Raketendüsen bei Überexpansion
暂无分享,去创建一个
[1] R. Mcamis,et al. Theoretical liquid rocket engine nozzle flow fields , 1992 .
[2] D. Migdal,et al. Truncated Perfect Nozzles in Optimum Nozzle Design , 1961 .
[3] A. Herbertz,et al. Vergleich von Konturauslegungsverfahren für konventionelle Raketenmotordüsen , 1998 .
[4] Hans G. Hornung,et al. Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation , 1979, Journal of Fluid Mechanics.
[5] Maurice Tucker,et al. Effect of a Discontinuity on Turbulent Boundary-Layer-Thickness Parameters With Application to Shock-Induced Separation , 1955 .
[6] Gabi Ben-Dor,et al. Shock wave reflection phenomena , 1992 .
[7] G. H. Ratekin,et al. Structural response of the SSME fuel feedline to unsteady shock oscillations , 1981 .
[8] George Emanuel,et al. Gasdynamics, theory and applications , 1986 .
[9] Hans G. Hornung,et al. Transition from regular to Mach reflection of shock waves Part 2. The steady-flow criterion , 1982, Journal of Fluid Mechanics.
[10] Carl E. Campbell,et al. Performance of Several Method-of-Characteristics Exhaust Nozzles , 1960 .
[11] Lloyd H. Back,et al. Shock wave/turbulent boundary-layer interactions with and without surface cooling , 1976 .
[12] C. C. Horstman,et al. Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows , 1987 .
[13] Kenneth J. Plotkin,et al. Shock wave oscillation driven by turbulent boundary layer fluctuations , 1975 .
[14] A. L. Addy,et al. Turbulent Boundary-Layer Properties Downstream of the Shock-Wave / Boundary-Layer Interaction , 1986 .
[15] Luigi Crocco,et al. THE PEAK PRESSURE RISE ACROSS AN OBLIQUE SHOCK EMERGING FROM A TURBULENT BOUNDARY LAYER OVER A PLANE SURFACE , 1954 .
[16] J. A. Sadunas,et al. Prediction of Nozzle Side Forces Which Occur During Staging , 1981 .
[17] R. A. Lawrence. Symmetrical and unsymmetrical flow separation in supersonic nozzles , 1967 .
[18] S. Kalt,et al. Conical rocket nozzle performance under flow- separated conditions , 1965 .
[19] Kuno Foelsch,et al. The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet , 1949 .
[20] S. R. Chakravarthy,et al. Numerical investigation of separated nozzle flows , 1994 .
[21] B. W. Imrie,et al. Compressible Fluid Flow , 1973 .
[22] B. Launder,et al. THE NUMERICAL COMPUTATION OF TURBULENT FLOW , 1974 .
[23] Ludwig Prandtl,et al. Führer durch die Strömungslehre , 1990 .
[24] M. Holden,et al. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow , 1972 .
[25] T. J. Goldberg,et al. Turbulent-Flow Separation Criteria for Overexpanded Supersonic Nozzles , 1978 .
[26] Shigeru Aso,et al. Fluctuation of heat transfer in shock wave/turbulent boundary-layer interaction , 1988 .
[27] Robert D. Tyler. Pressure Rise Required for Separation in Interaction Between Turbulent Boundary Layer and Shock Wave , 1953 .
[28] E. Spiegler,et al. Shock-Induced Boundary Layer Separation in Over-Expanded Conical Exhaust Nozzles , 1963 .
[29] Mehmet Erengil,et al. Unsteady wave structure near separation in a Mach 5 compression rampinteraction , 1991 .
[30] G. Hagemann,et al. Nozzle flowfield analysis with particular regard to 3D-plug cluster configurations , 1996 .
[31] Roy A. Lawrence,et al. Factors Affecting Flow Separation in Contoured Supersonic Nozzles , 1968 .
[32] R. J. Antl,et al. EXPERIMENTAL STUDY OF EFFECTS OF GEOMETRIC VARIABLES ON PERFORMANCE OF CONICAL ROCKET-ENGINE EXHAUST NOZZLES , 1961 .
[33] Frank W. Spaid,et al. Incipient Separation of a Supersonic, Turbulent Boundary Layer, Including Effects of Heat Transfer , 1972 .
[34] M. V. Dyke,et al. An Album of Fluid Motion , 1982 .
[35] Gabi Ben-Dor,et al. Stability of regular and Mach reflection wave configurations in steady flows , 1996 .
[36] Charles R. Foster,et al. Experimental Study of Gas-Flow Separation in Overexpanded Exhaust Nozzles for Rocket Motors , 1949 .
[37] L. F. Henderson,et al. The von Neumann paradox for the diffraction of weak shock waves , 1990, Journal of Fluid Mechanics.
[38] M. Onofri,et al. Viscous and Inviscid Vortex Generation During Startup of Rocket Nozzles , 1998 .
[39] Helmut Ciezki,et al. Investigation of the Combustion Behaviour of Solid Fuel Slabs in a Planar Step Combustor with a Colour Schlieren Technique , 1999 .
[40] Persönliche Mitteilung , 1960, 1960.
[41] Abdellah Hadjadj,et al. Analyse physique et simulation numérique des écoulements compressibles. Application aux tuyères de propulseurs. (Numerical simulation of compressible flows with application to rocket nozzles) , 1997 .
[42] J. M. Bowyer,et al. An investigation of the side force that is sometimes observed in rocket start-up , 1978 .
[43] W. Tollmien,et al. Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .
[44] Mikael Bigert,et al. A Sub Scale Investigation on Side Loads in Sea Level Rocket Nozzles , 1999 .
[45] D. Dolling,et al. Unsteadiness of the Separation Shock Wave Structure in a Supersonic Compression Ramp Flowfield , 1983 .
[46] Wolfgang Rodi,et al. Calculation of Annular and Twin Parallel Jets Using Various Discretization Schemes and Turbulence-Model Variations , 1981 .
[47] C. C. Horstman,et al. Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows , 1976 .
[48] J. M. Farley,et al. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles , 1960 .
[49] Roy H Lange. Present status of information relative to the prediction of shock-induced boundary-layer separation , 1954 .
[50] G. Dumnov. Unsteady side-loads acting on the nozzle with developed separation zone , 1996 .
[51] Eric F. Spina,et al. The Physics of Supersonic Turbulent Boundary Layers , 1994 .
[52] G. Hagemann,et al. Flow Separation and Side-Loads in Rocket Nozzles , 1999 .
[53] G. Hagemann,et al. Status of Low Separation Prediction in Rocket Nozzles. , 1998 .
[54] A. Kistler,et al. Fluctuating wall pressure under a separated supersonic flow , 1964 .
[55] Alexander J. Smits,et al. Experimental study of three shock wave/turbulent boundary layer interactions , 1987, Journal of Fluid Mechanics.
[56] D. Dolling. Unsteadiness of the shock wave structure in attached and separated compression ramp flowfields , 1983 .
[57] G. Rao. Exhaust Nozzle Contour for Optimum Thrust , 1958 .
[58] Eugene S. Love,et al. Experimental and Theoretical Studies of Axisymmetric Free Jets , 1959 .
[59] Gary S. Settles,et al. Details of a Shock-Separated Turbulent Boundary Layer at a Compression Corner , 1976 .
[60] G. M. Elfstrom. Turbulent hypersonic flow at a wedge-compression corner , 1972 .
[61] Flint O. Thomas,et al. On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions , 1994 .
[62] Coleman duP. Donaldson,et al. Study of the Pressure Rise Across Shock Waves Required to Separate Laminar and Turbulent Boundary Layers , 1952 .
[63] G. L. Romine. Nozzle flow separation , 1998 .
[64] Awatef Hamed,et al. Hypersonic flow separation in shock wave boundary layer interactions , 1992 .
[65] L. H. Nave,et al. Sea level side loads in high-area-ratio rocket engines , 1973 .
[66] Mikhail S. Ivanov,et al. Transition between regular and Mach reflections of shock waves in steady flows , 1997 .
[67] Gary S. Settles,et al. Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow , 1979 .
[68] Otto Martin. Dampf- und Gasturbinen , 1971 .
[69] Dean R. Chapman,et al. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition , 1958 .
[70] Lloyd H. Back,et al. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves , 1970 .
[71] Alexander J. Smits,et al. Turbulence structure in a shock wave/turbulent boundary-layer interaction , 1989 .
[72] D. A. Johnson,et al. Investigation of shock-induced separation of a turbulent boundary layer using laser velocimetry , 1976 .
[73] J. Andreopoulos,et al. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows , 1987, Journal of Fluid Mechanics.
[74] Gary S. Settles,et al. Reynolds Number Effects on Shock-Wave Turbulent Boundary-Layer Interactions , 1977 .
[75] Nikolaus A. Adams,et al. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685 , 2000, Journal of Fluid Mechanics.