Tensorial Minkowski functionals and anisotropy measures for planar patterns

Quantitative measures for anisotropic characteristics of spatial structure are needed when relating the morphology of microstructured heterogeneous materials to tensorial physical properties such as elasticity, permeability and conductance. Tensor‐valued Minkowski functionals, defined in the framework of integral geometry, provide a concise set of descriptors of anisotropic morphology. In this article, we describe the robust computation of these measures for microscopy images and polygonal shapes. We demonstrate their relevance for shape description, their versatility and their robustness by applying them to experimental data sets, specifically microscopy data sets of non‐equilibrium stationary Turing patterns and the shapes of ice grains from Antarctic cores.

[1]  Jerome J. Morgan New Method for the Determination of Potassium in Silicates. , 1921 .

[2]  C. Broedersz,et al.  Microscopic origins of nonlinear elasticity of biopolymer networks , 2007 .

[3]  S. Alesker Description of Continuous Isometry Covariant Valuations on Convex Sets , 1999 .

[4]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  N. Abbott,et al.  Quantitative characterization of obliquely-deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals , 1999 .

[6]  Mecke Morphological characterization of patterns in reaction-diffusion systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Punam K Saha,et al.  Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. , 2007, Medical physics.

[8]  Masatoshi Saitou,et al.  Stripe pattern formation in ag–sb co-electrodeposition , 2005 .

[9]  Francois Graner,et al.  Deformation of grain boundaries in polar ice , 2003, cond-mat/0309081.

[10]  W. J. Whitehouse The quantitative morphology of anisotropic trabecular bone , 1974, Journal of microscopy.

[11]  Ramin Farnood,et al.  Characterizing Anisotropy of the Deterministic Features in Paper Structure with Wavelet Transforms , 2007 .

[12]  Claus Beisbart,et al.  Vector- und Tensor-Valued Descriptors for Spatial Patterns , 2002 .

[13]  Harry L. Swinney,et al.  Transition to chemical turbulence. , 1991, Chaos.

[14]  Francois Graner,et al.  Foam in a two-dimensional Couette shear: a local measurement of bubble deformation , 2005, Journal of Fluid Mechanics.

[15]  K. Mecke,et al.  Solvation of proteins: linking thermodynamics to geometry. , 2007, Physical review letters.

[16]  Dave H. Eberly Game Physics , 2003 .

[17]  Klaus Mecke,et al.  Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics , 2000 .

[18]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[19]  James A. Glazier,et al.  A texture tensor to quantify deformations , 2003 .

[20]  Rachid Harba,et al.  A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform , 2005, BMC Medical Imaging.

[21]  K. Mecke,et al.  Characterization of the dynamics of block copolymer microdomains with local morphological measures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Statistical characterization of surface morphologies , 2006 .

[23]  D. Stoyan,et al.  Morphology of Condensed Matter: Physics And Geometry Of Spatially Complex Systems , 2010 .

[24]  J. Jouzel,et al.  A tentative chronology for the EPICA Dome Concordia Ice Core , 2001 .

[25]  S. H. Faria,et al.  Comment on “Deformation of grain boundaries in polar ice" by G. Durand et al. , 2005 .

[26]  L. Santaló Integral geometry and geometric probability , 1976 .

[27]  R. Mann,et al.  Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor , 1984 .

[28]  Two-dimensional Turing-like patterns in the PA-MBO-System and effects of an electric field , 1996 .

[29]  Klaus Mecke,et al.  Utilizing Minkowski functionals for image analysis: a marching square algorithm , 2008 .

[30]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[31]  H J Gundersen,et al.  Estimation of structural anisotropy based on volume orientation. A new concept , 1990, Journal of microscopy.

[32]  W. Blaschke Vorlesungen über Integralgeometrie , 1937 .

[33]  H. Hadwiger Beweis eines Funktionalsatzes für konvexe Körper , 1951 .

[34]  Stereological Characterization of Structural Anisotropy of Rolled Steel , 2005, Microscopy and Microanalysis.

[35]  K. Mecke,et al.  Motion by stopping: rectifying Brownian motion of nonspherical particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  A. Böker,et al.  Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. , 2006, Soft matter.

[37]  H. Wagner,et al.  Extended morphometric analysis of neuronal cells with Minkowski valuations , 2005, cond-mat/0507648.

[38]  D. Reinelt,et al.  Structure of random monodisperse foam. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[40]  F Graner,et al.  Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions , 2007, The European physical journal. E, Soft matter.

[41]  Studien zur vektoriellen Integralgeometrie , 1973 .

[42]  Ralph Müller,et al.  Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[43]  F Graner,et al.  Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam , 2008, The European physical journal. E, Soft matter.

[44]  H. Müller Über Momente ersten und zweiten Grades in der Integralgeometrie , 1953 .

[45]  Jane R. Blackford,et al.  Sintering and microstructure of ice: a review , 2007 .

[46]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[47]  K. Mecke,et al.  3D structural analysis: sensitivity of Minkowski functionals , 2010, Journal of microscopy.

[48]  Aleš Linka,et al.  Analysis of Planar Anisotropy of Fibre Systems by Using 2D Fourier Transform , 2007 .

[49]  Joy Dunkers,et al.  Quantifying the directional parameter of structural anisotropy in porous media. , 2006, Tissue engineering.

[50]  Volker Schmidt,et al.  Algorithms for the computation of the Minkowski functionals of deterministic and random polyconvex sets , 2007, Image Vis. Comput..

[51]  R. Schneider,et al.  The space of isometry covariant tensor valuations , 2007 .

[52]  Jan Rataj,et al.  Analysis of planar anisotropy by means of the Steiner compact , 1989 .