Enhanced Field-Emission and Red Lasing of Ordered CdSe Nanowire Branched Arrays

Ordered CdSe nanowire branched arrays were designed and synthesized while merging two particular structural features within a single nanomaterial. This novel CdSe nanostructure combines a branched structure and ordered single-crystalline character. The stems and branches consist of wurtzite CdSe single crystals. When measuring field-emission properties, the CdSe novel nanostructure demonstrated a low turn-on field at 4.3 ± 0.2 V μm–1 for the current densities of 10 μA cm–2, high field-enhancement factor (1160 ± 50), and long emission stability. It indicates that the CdSe novel nanostructure could potentially be used as field emitters. The excellent field-emission performance is due to the unique morphology of CdSe, e.g., high structural order, branched structure, perfect single-crystallinity, and tapered nanotips. In addition, red lasing, in a range 700–720 nm, of the ordered CdSe nanowire branched arrays were demonstrated. The nature of the observed lasing emission accords with coherent random lasing beh...

[1]  Rui Chen,et al.  Excitonic Properties and Near‐Infrared Coherent Random Lasing in Vertically Aligned CdSe Nanowires , 2011, Advanced materials.

[2]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[3]  J. Zou,et al.  ZnS Branched Architectures as Optoelectronic Devices and Field Emitters , 2010, Advanced materials.

[4]  J. Yao,et al.  Orange-blue-orange triblock one-dimensional heterostructures of organic microrods for white-light emission. , 2010, Journal of the American Chemical Society.

[5]  Xin Wang,et al.  Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. , 2009, Nano letters.

[6]  Shih‐Yuan Lu,et al.  Modulation and Improvement on Separation of Photoinduced Charge Carriers in CdS−Metal Nanoheterostructures , 2009 .

[7]  Shui-Tong Lee,et al.  Synthesis of CdSXSe1−X Nanoribbons with Uniform and Controllable Compositions via Sulfurization: Optical and Electronic Properties Studies , 2009 .

[8]  W. Ge,et al.  Realization and field emission of CdSe nano-tetrapods with different arm lengths , 2009 .

[9]  S. Haigh,et al.  Synthesis and Structural Characterization of Branched Palladium Nanostructures , 2009 .

[10]  Abbes Tahraoui,et al.  Top-gated silicon nanowire transistors in a single fabrication step. , 2009, ACS nano.

[11]  H. Zeng,et al.  Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. , 2009, ACS nano.

[12]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[13]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[14]  Y. Feng,et al.  Novel CdS Nanostructures: Synthesis and Field Emission , 2008 .

[15]  A. Pan,et al.  Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates , 2008 .

[16]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[17]  Y. Bando,et al.  Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. , 2008, ACS nano.

[18]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[19]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[20]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[21]  A. Pan,et al.  Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts , 2007 .

[22]  Shui-Tong Lee,et al.  Photoresponse Properties of CdSe Single‐Nanoribbon Photodetectors , 2007 .

[23]  Zhong Lin Wang,et al.  High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. , 2006, The journal of physical chemistry. B.

[24]  Yang Jiang,et al.  Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays , 2006 .

[25]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[26]  Youngjin Choi,et al.  Structural and optical properties of CdSxSe1-x nanowires , 2005 .

[27]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[28]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[29]  Y. Li,et al.  Growth and Field Emission of Hierarchical Single‐Crystalline Wurtzite AlN Nanoarchitectures , 2005 .

[30]  Charles M. Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2004, Nano letters.

[31]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[32]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[33]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[34]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[35]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[36]  Shui-Tong Lee,et al.  Fabrication and Field Emission of High‐Density Silicon Cone Arrays , 2002 .

[37]  M. Bawendi,et al.  Reversible Charging of CdSe Nanocrystals in a Simple Solid‐State Device , 2002 .

[38]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[39]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[40]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[41]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[42]  J. Mei,et al.  Photoluminescence on CdSe and CdTe under hydrostatic pressure , 1984 .

[43]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .