Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set

[1]  Irina M. Artemieva,et al.  Global 1°×1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution , 2006 .

[2]  J. Afonso,et al.  Comprehensive plate models for the thermal evolution of oceanic lithosphere , 2013 .

[3]  S. Fuchs,et al.  Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German Basin , 2014 .

[4]  M. Doin,et al.  Thermal evolution of the oceanic lithosphere: an alternative view , 1996 .

[5]  F. Niessen,et al.  Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica , 2010 .

[6]  Jian Wang,et al.  A global reference model of Curie-point depths based on EMAG2 , 2017, Scientific Reports.

[7]  C. Jaupart,et al.  Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data , 2006 .

[8]  G. Leitchenkov,et al.  Global sediment thickness data set updated for the Australian‐Antarctic Southern Ocean , 2013 .

[9]  R. Detrick,et al.  Heat flow and the thermal origin of hot spot swells: The Hawaiian Swell revisited , 1989 .

[10]  M. McNutt,et al.  Evidence for and consequences of thermal rejuvenation , 1982 .

[11]  M. Yamano,et al.  Deep sea bottom-simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates * , 1992 .

[12]  Jean-Claude Mareschal,et al.  Variations of surface heat flow and lithospheric thermal structure beneath the North American craton , 2004 .

[13]  John G. Sclater,et al.  Oceans and continents: Similarities and differences in the mechanisms of heat loss , 1981 .

[14]  A. Davaille,et al.  Onset of thermal convection in fluids with temperature‐dependent viscosity: Application to the oceanic mantle , 1994 .

[15]  J. R. Cochran,et al.  Near‐axis subsidence rates, hydrothermal circulation, and thermal structure of mid‐ocean ridge crests , 2001 .

[16]  Gene Simmons,et al.  Thermal conductivity of Earth materials at high temperatures , 1972 .

[17]  N. Simmons,et al.  Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform , 2008 .

[18]  V. Hamza,et al.  The relationship of heat flow with age of basement rocks , 1969 .

[19]  D. Hasterok A heat flow based cooling model for tectonic plates , 2013 .

[20]  G. Masters,et al.  Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust , 2013 .

[21]  H. Villinger,et al.  Hydrothermal heat flux through aged oceanic crust: where does the heat escape? , 2002 .

[22]  M. Tivey,et al.  Quantitative estimate of heat flow from a mid‐ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences , 2014 .

[23]  J. Korenaga Effective thermal expansivity of Maxwellian oceanic lithosphere , 2007 .

[24]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[25]  J. Guinan,et al.  Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope , 2007 .

[26]  F. Lucazeau,et al.  High‐resolution heat flow density in the lower Congo basin , 2004 .

[27]  C. Jaupart,et al.  The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective , 2014 .

[28]  F. Lucazeau,et al.  Heat flow variations on a slowly accreting ridge: Constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid‐Atlantic Ridge, 37°N) , 2006 .

[29]  A. Fisher,et al.  Models of hydrothermal circulation within 106 Ma seafloor: Constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain , 2005 .

[30]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[31]  J. Bendtsen,et al.  High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream , 2018, Scientific Reports.

[32]  J. Hillier,et al.  Relationship between depth and age in the North Pacific Ocean , 2005 .

[33]  B. Parsons,et al.  A note on the correction of ocean floor depths for sediment loading , 1982 .

[34]  Walter H. F. Smith,et al.  Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate , 2009 .

[35]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[36]  R. Harris,et al.  Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate , 2003 .

[37]  F. Lucazeau,et al.  Temperatures, Heat, and Energy in the Mantle of the Earth , 2007 .

[38]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[39]  J. Hillier,et al.  An integration to optimally constrain the thermal structure of oceanic lithosphere , 2013 .

[40]  Christoph Clauser,et al.  Thermal conductivity from core and well log data , 2005, 0806.2399.

[41]  K. Priestley,et al.  Thermal structure of oceanic and continental lithosphere , 2005 .

[42]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[43]  F. Pattyn,et al.  Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica , 2013 .

[44]  Akiko Tanaka,et al.  Geothermal gradient and heat flow data in and around Japan (I): Appraisal of heat flow from geothermal gradient data , 2004 .

[45]  M. Hutnak,et al.  Conductive heat loss in recent eruptions at mid‐ocean ridges , 1997 .

[46]  M. Mottl,et al.  Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank , 2003, Nature.

[47]  A. Rosenberger,et al.  Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan , 2000 .

[48]  G. K. Reddy,et al.  Age dependence of continental heat flow—fantasy and facts , 1982 .

[49]  C. Lister,et al.  Reheating of old oceanic lithosphere: Deductions from observations , 1996 .

[50]  F. Lucazeau,et al.  Global heat flow trends resolved from multiple geological and geophysical proxies , 2011 .

[51]  A. Schultz,et al.  Conductive heat flow at the TAG Active Hydrothermal Mound: Results from 1993-1995 submersible surveys , 1996 .

[52]  E. Davis,et al.  Fundamentals of ridge crest topography , 1974 .

[53]  A. Benfield Terrestrial heat flow in Great Britain , 1939 .

[54]  J. Wright,et al.  The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity , 1979 .

[55]  Yizuo Shi,et al.  Terrestrial heat flow of continental China: Updated dataset and tectonic implications , 2019, Tectonophysics.

[56]  D. Davies,et al.  Earth's surface heat flux , 2009 .

[57]  F. Huang,et al.  Compilation of heat flow data in the continental area of China (4th edition) , 2016 .

[58]  R. Detrick,et al.  Island subsidence, hot spots, and lithospheric thinning , 1978 .

[59]  F. Rolandone,et al.  Persistent thermal activity at the Eastern Gulf of Aden after continental break-up , 2008 .

[60]  N. White,et al.  Reassessing the Thermal Structure of Oceanic Lithosphere With Revised Global Inventories of Basement Depths and Heat Flow Measurements , 2018, Journal of Geophysical Research: Solid Earth.

[61]  H. Johnson,et al.  Near‐axis heat flow measurements on the northern Juan De Fuca Ridge: Implications for fluid circulation in oceanic crust , 1993 .

[62]  H. Pollack,et al.  Global heat flow: A new look , 1975 .

[63]  Alain Bonneville,et al.  Using neural networks to predict thermal conductivity from geophysical well logs , 2006 .

[64]  A. Fisher Permeability within basaltic oceanic crust , 1998 .

[65]  J. Hillier,et al.  Marine heat flow , 2016 .

[66]  M. Huuse,et al.  Thermal regime of the northwest Indian rifted margin: comparison with predictions , 2010 .

[67]  Earl E. Davis,et al.  A Robust Rapid-Response Probe for Measuring Bottom-Hole Temperatures in Deep-Ocean Boreholes , 1997 .

[68]  Lijuan He,et al.  COMPILATION OF HEAT FLOW DATA IN THE CHINA CONTINENTAL AREA (3rd edition) , 2001 .

[69]  M. Yamano,et al.  Estimates of heat flow derived from gas hydrates , 1982 .

[70]  M. Mottl,et al.  FlankFlux: an experiment to study the nature of hydrothermal circulation in young oceanic crust , 1992 .

[71]  N. Hardebol,et al.  Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera , 2012 .

[72]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[73]  H. Pollack,et al.  Terrestrial heat flow in the Brazilian highlands , 1980 .

[74]  S. Stein,et al.  Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow , 1994 .

[75]  M. Sandiford,et al.  Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly , 2000 .

[76]  J. Huw Davies,et al.  Global map of solid Earth surface heat flow , 2013 .

[77]  C. Lister On the Thermal Balance of a Mid‐Ocean Ridge , 1972 .

[78]  A. Hofmeister,et al.  Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.

[79]  A. E. Maxwell,et al.  Heat Flow through the Floor of the Eastern North Pacific Ocean , 1952, Nature.

[80]  C. Adam,et al.  Mantle Flow Drives the Subsidence of Oceanic Plates , 2010, Science.

[81]  E. Bullard Heat Flow in South Africa , 1939 .

[82]  J. Francheteau,et al.  The Implications of Terrestrial Heat Flow Observations on Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth , 1970 .

[83]  M. Tivey,et al.  Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge , 2010 .

[84]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[85]  Michael H. Ritzwoller,et al.  Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica , 2004 .

[86]  Sukanta Roy,et al.  Heat flow in the Indian shield , 2000 .

[87]  B. Goutorbe Combining seismically derived temperature with heat flow and bathymetry to constrain the thermal structure of oceanic lithosphere , 2010 .

[88]  F. Lucazeau,et al.  Comparison of several BHT correction methods: a case study on an Australian data set , 2007 .

[89]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[90]  N. White,et al.  Understanding the thermal evolution of deep-water continental margins , 2003, Nature.

[91]  Maik Thomas,et al.  Melting at the base of the Greenland ice sheet explained by Iceland hotspot history , 2016 .

[92]  H. Pollack,et al.  On the variation of continental heat flow with age and the thermal evolution of continents , 1980 .

[93]  C. Wheat,et al.  Seamounts as Conduits for Massive Fluid, Heat, and Solute Fluxes on Ridge Flanks , 2010 .

[94]  R. Harris,et al.  Effects of the legacy of axial cooling on partitioning of hydrothermal heat extraction from oceanic lithosphere , 2011 .

[95]  F. Rolandone,et al.  Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone , 2018 .

[96]  E. Davis,et al.  Oceanic heat flow: Implications for global heat loss , 2011 .

[97]  C. Conrad,et al.  Influence of continental roots and asthenosphere on plate‐mantle coupling , 2006 .

[98]  R. Müller,et al.  The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep‐Time Carbon Cycle , 2018, Geophysical Research Letters.