Incorporating the Perception of Visual Roughness into the Design of Mid-Air Haptic Textures

Ultrasonic mid-air haptic feedback enables the tactile exploration of virtual objects in digital environments. However, an object’s shape and texture is perceived multimodally, commencing before tactile contact is made. Visual cues, such as the spatial distribution of surface elements, play a critical first step in forming an expectation of how a texture should feel. When rendering surface texture virtually, its verisimilitude is dependent on whether these visually inferred prior expectations are experienced during tactile exploration. To that end, our work proposes a method where the visual perception of roughness is integrated into the rendering algorithm of mid-air haptic texture feedback. We develop a machine learning model trained on crowd-sourced visual roughness ratings of texture images from the Penn Haptic Texture Toolkit (HaTT). We establish tactile roughness ratings for different mid-air haptic stimuli and match these ratings to our model’s output, creating an end-to-end automated visuo-haptic rendering algorithm. We validate our approach by conducting a user study to examine the utility of the mid-air haptic feedback. This work can be used to automatically create tactile virtual surfaces where the visual perception of texture roughness guides the design of mid-air haptic feedback.

[1]  J. Kaiser,et al.  Multisensory Object Perception in the Primate Brain , 2010 .

[2]  Susan J. Lederman,et al.  Multisensory Texture Perception , 2010 .

[3]  SubramanianSriram,et al.  Rendering volumetric haptic shapes in mid-air using ultrasound , 2014 .

[4]  Orestis Georgiou,et al.  Using Ultrasonic Mid-air Haptic Patterns in Multi-Modal User Experiences , 2019, 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE).

[5]  Sriram Subramanian,et al.  UltraHaptics: multi-point mid-air haptic feedback for touch surfaces , 2013, UIST.

[6]  Davide Rocchesso,et al.  Accessing and selecting menu items by in-air touch , 2019, CHItaly.

[7]  Yoji Yamada,et al.  Psychophysical Dimensions of Tactile Perception of Textures , 2013, IEEE Transactions on Haptics.

[8]  Yasutoshi Makino,et al.  HaptoClone (Haptic-Optical Clone) for Mutual Tele-Environment by Real-time 3D Image Transfer with Midair Force Feedback , 2016, CHI.

[9]  M. Landy Texture perception , 1996 .

[10]  S. Zucker,et al.  Finding structure in Co-occurrence matrices for texture analysis , 1980 .

[11]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[12]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[13]  Roope Raisamo,et al.  A Survey of Mid-Air Ultrasonic Tactile Feedback , 2019, 2019 IEEE International Symposium on Multimedia (ISM).

[14]  Joshua B. Tenenbaum,et al.  Deep Convolutional Inverse Graphics Network , 2015, NIPS.

[15]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[16]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[17]  Yasushi Ikei,et al.  TextureExplorer: a tactile and force display for virtual textures , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[18]  Heather Culbertson,et al.  One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[19]  Felix Raymond,et al.  Touch hologram in mid-air , 2017, SIGGRAPH Emerging Technologies.

[20]  Ming C. Lin,et al.  Synthesizing contact sounds between textured models , 2010, 2010 IEEE Virtual Reality Conference (VR).

[21]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Sriram Subramanian,et al.  Rendering volumetric haptic shapes in mid-air using ultrasound , 2014, ACM Trans. Graph..

[23]  Kasper Hornbæk,et al.  Generating Haptic Textures with a Vibrotactile Actuator , 2017, CHI.

[24]  José M. Soto-Hidalgo,et al.  An adaptive fuzzy approach for modeling visual texture properties , 2016, Fuzzy Sets Syst..

[25]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[26]  Emilia Djonov,et al.  The semiotics of texture: from tactile to visual , 2011 .

[27]  K. O. Johnson,et al.  Tactile spatial resolution. II. Neural representation of Bars, edges, and gratings in monkey primary afferents. , 1981, Journal of neurophysiology.

[28]  Orestis Georgiou,et al.  Cutaneous Wave Propagation Shapes Tactile Motion: Evidence from Air-Coupled Ultrasound , 2019, 2019 IEEE World Haptics Conference (WHC).

[29]  Ko Nishino,et al.  The Scale of Geometric Texture , 2012, ECCV.

[30]  Fraser Halley,et al.  Perceptually relevant browsing environments for large texture databases , 2012 .

[31]  R. Klatzky,et al.  Haptic perception: A tutorial , 2009, Attention, perception & psychophysics.

[32]  David Geerts,et al.  Invisible Touch: How Identifiable are Mid-Air Haptic Shapes? , 2019, CHI Extended Abstracts.

[33]  Orestis Georgiou,et al.  Mid-Air Haptic Algorithms for Rendering 3D Shapes , 2019, 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE).

[34]  H. Binns VISUAL AND TACTUAL ‘JUDGEMENT’ AS ILLUSTRATED IN A PRACTICAL EXPERIMENT , 1937 .

[35]  Markus Schweizer Computer Analysis Of Visual Textures , 2016 .

[36]  Hiroyuki Shinoda,et al.  Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound , 2010, IEEE Transactions on Haptics.

[37]  Orestis Georgiou,et al.  Mid-Air Haptic Bio-Holograms in Mixed Reality , 2019, 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).

[38]  S. Lederman,et al.  Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. , 1981, Journal of experimental psychology. Human perception and performance.

[39]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[40]  Karon E. MacLean,et al.  Perceptual Design of Haptic Icons , 2003 .

[41]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[42]  Yun Zhang,et al.  Optimisation of building detection in satellite images by combining multispectral classification and texture filtering , 1999 .

[43]  Lynette A. Jones,et al.  Application of Psychophysical Techniques to Haptic Research , 2013, IEEE Transactions on Haptics.

[44]  Vincent Hayward,et al.  Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives , 2017, IEEE Transactions on Haptics.

[45]  Irwin Hersey Textures: A Photographic Album for Artists and Designers by Phil Brodatz (review) , 1968 .

[46]  Philip Kortum,et al.  HCI Beyond the GUI: Design for Haptic, Speech, Olfactory, and Other Nontraditional Interfaces , 2008 .

[47]  Stephen A. Brewster,et al.  Textured surfaces for ultrasound haptic displays , 2017, ICMI.

[48]  Tommy Löfstedt,et al.  Gray-level invariant Haralick texture features , 2019, PloS one.

[49]  Soledad Ballesteros,et al.  The perception of ecological textures by touch: does the perceptual space change under bimodal visual and haptic exploration? , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[50]  J. Koenderink,et al.  Bidirectional Texture Contrast Function , 2004, International Journal of Computer Vision.

[51]  J. Edward Colgate,et al.  Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[52]  Renata M. C. R. de Souza,et al.  Texture classification based on co-occurrence matrix and self-organizing map , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[53]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[54]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[55]  Orestis Georgiou,et al.  Laser Doppler Vibrometry and FEM Simulations of Ultrasonic Mid-Air Haptics , 2019, 2019 IEEE World Haptics Conference (WHC).

[56]  Abderrahmane Sbihi,et al.  A Combined Method Of Fractal And GLCM Features For MRI And CT Scan Images Classification , 2014, ArXiv.

[57]  L. Ross The Image Processing Handbook, 7th ed., John C. Russ and F. Brent Neal. CRC Press, Boca Raton, FL, 2015, 1053 pp. ISBN: 978-1498740265. , 2016, Microscopy and Microanalysis.

[58]  Claudio Pacchierotti,et al.  Investigating the Recognition of Local Shapes Using Mid-air Ultrasound Haptics , 2019, 2019 IEEE World Haptics Conference (WHC).

[59]  Orestis Georgiou,et al.  Mid-Air Haptic Rendering of 2D Geometric Shapes With a Dynamic Tactile Pointer , 2020, IEEE Transactions on Haptics.

[60]  Derek DiFilippo The AHI : an audio and haptic interface for simulating contact interactions , 2000 .

[61]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[62]  J. Edward Colgate,et al.  A High-Fidelity Surface-Haptic Device for Texture Rendering on Bare Finger , 2014, EuroHaptics.

[63]  D. Katz Der Aufbau der Tastwelt , 1925 .