The evolution of multicellularity in animals as a shift in biological autonomy

The hypothesis is advanced that major evolutionary innovations are characterized by an increase of organismal autonomy in the sense of an emancipation from the environment. After a brief overview of the literature on this concept, increasing autonomy is defined as the evolutionary shift in the individual system-environment relationship, so that the direct influences of the environment are gradually reduced and a stabilization of self-referential, intrinsic functions within the system is generated. This is described as relative autonomy because numerous interconnections with the environment and dependencies upon it are retained. Elements of an increasing autonomy are spatial separations, an increase in homeostatic functions, internalizations and an increase in physiological and behavioral flexibility. These elements are described by taking the transition from single cells to metazoans as a case study. The principle of increasing autonomy is of central relevance for understanding this transition. The hypothesis does not contradict the principle of adaptation, but rather contributes to a further understanding of its elements as it supplies aspects for a reconsideration of the relationship between the outside and the inside, between organism and environment.

[1]  G. Mackie Introduction to the Diploblastic Level , 1984 .

[2]  J. Bereiter-Hahn,et al.  Biology of the Integument , 1984, Springer Berlin Heidelberg.

[3]  Philip C. J. Donoghue,et al.  Early life: Origins of multicellularity , 2010, Nature.

[4]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[5]  T. Simpson,et al.  The Cell Biology of Sponges , 1984, Springer New York.

[6]  C. Bernard Leçons sur les propriétés physiologiques et les altérations pathologiques des liquides de l'organisme / par Claude Bernard. , 1859 .

[7]  Claude Bernard,et al.  Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux , 1878 .

[8]  G. Zajicek,et al.  The Wisdom of the Body , 1934, Nature.

[9]  C. Nielsen Origin and evolution of animal life cycles , 1998 .

[10]  G. Mackie The Elementary Nervous System Revisited , 1990 .

[11]  Daniel W. McShea,et al.  Possible largest-scale trends in organismal evolution : Eight live hypotheses , 1998 .

[12]  Vom Molekül zur Organismenwelt : Grundfragen der modernen Biologie , 1949 .

[13]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[14]  D. McShea Complexity and evolution: What everybody knows , 1991 .

[15]  J. Gerhart,et al.  Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability , 1997 .

[16]  P. Morris THE DEVELOPMENTAL ROLE OF THE EXTRACELLULAR MATRIX SUGGESTS A MONOPHYLETIC ORIGIN OF THE KINGDOM ANIMALIA , 1993, Evolution; international journal of organic evolution.

[17]  J. Cracraft,et al.  The Early Evolution of Metazoa and the Significance of Problematic Taxa , 2009 .

[18]  V. Parmon,et al.  Entropy and Information , 2009 .

[19]  W. Müller Molecular Evolution: Towards the Origin of Metazoa , 1998, Progress in Molecular and Subcellular Biology.

[20]  N. Weissenfels Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis (Porifera) , 2004, Zoomorphology.

[21]  R. Rieger Evolution of the Cuticle in the Lower Eumetazoa , 1984 .

[22]  R. Fehon,et al.  Epithelial cell polarity and cell junctions in Drosophila. , 2001, Annual review of genetics.

[23]  R. Rieger,et al.  The evolution of the lower Metazoa: evidence from the phenotype. , 1998, Progress in molecular and subcellular biology.

[24]  W. Müller,et al.  Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[25]  François Jacob, Die Logik des Lebenden. Von der Urzeugung zum Genetischen Code (Übersetzung aus dem Französischen). 346 S. Frankfurt/M. 1972: S. Fischer, DM 26,00 , 1973 .

[26]  R. Steele,et al.  A molecular snapshot of the metazoan 'Eve'. , 1993, Trends in biochemical sciences.

[27]  Evolution und Stammesgeschichte der Organismen , 1992 .

[28]  B. Filshie,et al.  Junctional structures in hydra. , 1977, Journal of cell science.

[29]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[30]  ScienceDirect Comparative biochemistry and physiology. B, Comparative biochemistry , 1993 .

[31]  JULIAN HUXLEY,et al.  The Three Types of Evolutionary Process , 1957, Nature.

[32]  K. J. Pedersen Invited Review: Structure and Composition of Basement Membranes and Other Basal Matrix Systems in Selected Invertebrates , 1991 .

[33]  Richard C Lewontin,et al.  The Triple Helix: Gene, Organism, and Environment , 2000 .

[34]  H. Kaneko,et al.  Paracellular, transepithelial permeation of macromolecules in the body wall epithelium of starfish embryos , 1995 .

[35]  J. Madara Regulation of the movement of solutes across tight junctions. , 1998, Annual review of physiology.

[36]  T. Cavalier-smith,et al.  Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence , 1996 .

[37]  L. Slobodkin,et al.  THE STRATEGY OF EVOLUTION. , 1964, American scientist.

[38]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[39]  L. Margulis Kingdom Animalia: the zoological malaise from a microbial perspective. , 1990, American zoologist.

[40]  P. Taylor Extinctions in the History of Life , 2009 .

[41]  B. Rensch,et al.  Evolution above the species level , 1959 .

[42]  Homer W. Smith From Fish To Philosopher , 1953 .

[43]  F R S Lewis Wolpert,et al.  The evolution of the development , 1990 .

[44]  N. Weissenfels Bau und funktion des sü\wasserschwamms Ephydatia fluviatilis L. (porifera) , 1975, Zeitschrift für Morphologie der Tiere.

[45]  I. Schmalhausen,et al.  Factors of evolution , 1949 .

[46]  J. Huxley Evolution: The Modern Synthesis , 1943 .

[47]  W. F. Gutmann Relationships Between Invertebrate Phyla Based on Functional-Mechanical Analysis of the Hydrostatic Skeleton , 1981 .

[48]  Johan Bollen,et al.  The evolution of complexity , 1999 .

[49]  P. Willmer Invertebrate Relationships: Patterns in Animal Evolution , 1990 .

[50]  M. Itoh,et al.  Molecular architecture of tight junctions: occludin and ZO-1. , 1997, Society of General Physiologists series.

[51]  R. Rieger,et al.  Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells , 1987, Zoomorphology.

[52]  M. Bunge,et al.  Foundations of Biophilosophy , 1997, Springer Berlin Heidelberg.

[53]  P. Ledger Septate junctions in the calcareous sponge Sycon ciliatum. , 1975, Tissue & cell.

[54]  C. Duve Blueprint for a Cell: The Nature and Origin of Life , 1991 .

[55]  P. Luisi Autopoiesis: a review and a reappraisal , 2003, Naturwissenschaften.

[56]  D. Meeter,et al.  Directions in the History of Life , 1986 .

[57]  Peter W. H. Holland,et al.  MAJOR TRANSITIONS IN ANIMAL EVOLUTION : A DEVELOPMENTAL GENETIC PERSPECTIVE , 1998 .

[58]  A. Wessel Westheide. W., Rieger, R. (Hrsg.) (1996): Spezielle Zoologie. Erster Teil: Einzeller und Wirbellose Tiere. Gustav Fischer Verlag, Stuttgart, Jena, New York. 909 S., 1167 Abb. und 5 Tab., geb. DM 148,– , 1997 .

[59]  Jeffrey S. Wicken,et al.  Evolution, thermodynamics and information , 1987 .

[60]  Francisco J. Ayala,et al.  The Concept of Biological Progress , 1974 .

[61]  Manfred Hündgen Cnidaria: Cell Types , 1984 .

[62]  The Evolutionary Process: A Critical Review of Evolutionary Theory , 1985 .

[63]  John Collier,et al.  Entropy and information in evolving biological systems , 1989 .

[64]  C. H. Waddington,et al.  The nature of life : the main problems and trends of thought in modern biology , 1966 .

[65]  George Gaylord Simpson,et al.  The Meaning of Evolution , 1928, Science.

[66]  R. Bagby,et al.  The fine structure of pinacocytes in the marine sponge Microciona prolifera (Ellis and Solander) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[67]  R. Garrone Evolution of metazoan collagens. , 1998, Progress in molecular and subcellular biology.

[68]  Pat Willmer,et al.  Environmental physiology of animals , 1976 .

[69]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[70]  R. Rieger,et al.  Fine Structure of the Archiannelid Cuticle and Remarks on the Evolution of the Cuticle Within the Spiralia , 1976 .

[71]  D. Schlichter Cnidaria: Permeability, Epidermal Transport and Related Phenomena , 1984 .

[72]  S. Morris The fossil record and the early evolution of the Metazoa , 1993, Nature.

[73]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[74]  V. Ramakrishnan,et al.  Crystal structure of globular domain of histone H5 and its implications for nucleosome binding , 1993, Nature.