Oops! I cannot do it again: Testing for recursive feasibility in MPC

One of the most fundamental problems in model predictive control (MPC) is the lack of guaranteed stability and feasibility. It is shown how Farkas' Lemma in combination with bilevel programming and disjoint bilinear programming can be used to search for problematic initial states which lack recursive feasibility, thus invalidating a particular MPC controller. Alternatively, the method can be used to derive a certificate that the problem is recursively feasible. The results are initially derived for nominal linear MPC, and thereafter extended to the additive disturbance case.

[1]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[2]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[3]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[4]  Jun-ichi Imura,et al.  Controlled invariant feasibility - A general approach to enforcing strong feasibility in MPC applied to move-blocking , 2009, Autom..

[5]  F. Al-Khayyal Generalized bilinear programming: Part I. Models, applications and linear programming relaxation , 1992 .

[6]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[7]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[8]  M. Morari,et al.  Move blocking strategies in receding horizon control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[12]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[13]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[14]  Mato Baotić,et al.  Optimal control of piecewise affine systems - a multi-parametric approach , 2005 .

[15]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[16]  F. Borrelli Discrete time constrained optimal control , 2002 .

[17]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[18]  Michal Kvasnica,et al.  Efficient software tools for control and analysis of hybrid systems , 2008 .

[19]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .