EF-Net: A novel enhancement and fusion network for RGB-D saliency detection

Abstract Salient object detection (SOD) has gained tremendous attention in the field of computer vision. Multi-modal SOD based on the complementary information from RGB images and depth maps has shown remarkable success, making RGB-D saliency detection an active research topic. In this paper, we propose a novel multi-modal enhancement and fusion network (EF-Net) for effective RGB-D saliency detection. Specifically, we first utilize a color hint map module with RGB images to predict a hint map, which encodes the coarse information of salient objects. The resulting hint map is then utilized to enhance the depth map with our depth enhancement module, which suppresses the noise and sharpens the object boundary. Finally, we propose an effective layer-wise aggregation module to fuse the features extracted from the enhanced depth maps and RGB images for the accurate detection of salient objects. Our EF-Net utilizes an enhancement-and-fusion framework for saliency detection, which makes full use of the information from RGB images and depth maps. In addition, our depth enhancement module effectively resolves the low-quality issue of depth maps, which boosts the saliency detection performance remarkably. Extensive experiments on five widely-used benchmark datasets demonstrate that our method outperforms 12 state-of-the-art RGB-D saliency detection approaches in terms of five key evaluation metrics.

[1]  Nicu Sebe,et al.  Image saliency by isocentric curvedness and color , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  Xueqing Li,et al.  Leveraging stereopsis for saliency analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Nick Barnes,et al.  Local Background Enclosure for RGB-D Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Huazhu Fu,et al.  Foreground Detection and Segmentation in RGB-D Images , 2019, RGB-D Image Analysis and Processing.

[5]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[6]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[7]  Ruigang Yang,et al.  A Unified Spatiotemporal Prior based on Geodesic Distance for Video Object Segmentation , 2017 .

[8]  Hejun Wu,et al.  Cross-Modal Attentional Context Learning for RGB-D Object Detection , 2018, IEEE Transactions on Image Processing.

[9]  Bo Ren,et al.  Enhanced-alignment Measure for Binary Foreground Map Evaluation , 2018, IJCAI.

[10]  Sanyuan Zhao,et al.  Learning Unsupervised Video Object Segmentation Through Visual Attention , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Ling Shao,et al.  RGB-D salient object detection: A survey , 2021, Comput. Vis. Media.

[12]  Wenguan Wang,et al.  Shifting More Attention to Video Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Xing Cai,et al.  PDNet: Prior-Model Guided Depth-Enhanced Network for Salient Object Detection , 2018, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[14]  Tongwei Ren,et al.  Salient object detection for RGB-D image via saliency evolution , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[15]  Jingjing Li,et al.  Memory-oriented Decoder for Light Field Salient Object Detection , 2019, NeurIPS.

[16]  Jiandong Tian,et al.  RGBD Salient Object Detection via Deep Fusion , 2016, IEEE Transactions on Image Processing.

[17]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[18]  Zheng Lin,et al.  Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[20]  Gang Wang,et al.  Recurrent Attentional Networks for Saliency Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Gayoung Lee,et al.  Deep Saliency with Encoded Low Level Distance Map and High Level Features , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Jiangjiang Liu,et al.  Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground , 2018, ECCV.

[23]  Rongrong Ji,et al.  RGBD Salient Object Detection: A Benchmark and Algorithms , 2014, ECCV.

[24]  Zhi Liu,et al.  Salient region detection for stereoscopic images , 2014, 2014 19th International Conference on Digital Signal Processing.

[25]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[26]  Qijun Zhao,et al.  Siamese Network for RGB-D Salient Object Detection and Beyond , 2020, ArXiv.

[27]  Tian Xia,et al.  RGB-T Image Saliency Detection via Collaborative Graph Learning , 2019, IEEE Transactions on Multimedia.

[28]  Hao Chen,et al.  CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion , 2017 .

[29]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[30]  Qingming Huang,et al.  ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection , 2020, IEEE Transactions on Cybernetics.

[31]  Yizhou Yu,et al.  Deep Contrast Learning for Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Youfu Li,et al.  Three-Stream Attention-Aware Network for RGB-D Salient Object Detection , 2019, IEEE Transactions on Image Processing.

[33]  Huazhu Fu,et al.  Taking a Deeper Look at Co-Salient Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Dan Su,et al.  Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection , 2019, Pattern Recognit..

[35]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Ran Ju,et al.  Depth saliency based on anisotropic center-surround difference , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[37]  Wei Ji,et al.  Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[38]  Youfu Li,et al.  Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[39]  Ling Shao,et al.  An Iterative and Cooperative Top-Down and Bottom-Up Inference Network for Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Ming-Hsuan Yang,et al.  PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Xiaochun Cao,et al.  Depth Enhanced Saliency Detection Method , 2014, ICIMCS '14.

[43]  Huchuan Lu,et al.  Towards High-Resolution Salient Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Tao Li,et al.  Structure-Measure: A New Way to Evaluate Foreground Maps , 2017, International Journal of Computer Vision.

[45]  Ling Shao,et al.  BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network , 2020, ECCV.

[46]  Ling Shao,et al.  Camouflaged Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Zhiming Luo,et al.  Non-local Deep Features for Salient Object Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Qingming Huang,et al.  Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion , 2016, IEEE Signal Processing Letters.

[49]  Chunjie Zhang,et al.  A Parallel Down-Up Fusion Network for Salient Object Detection in Optical Remote Sensing Images , 2020, Neurocomputing.

[50]  K. Madhava Krishna,et al.  Depth really Matters: Improving Visual Salient Region Detection with Depth , 2013, BMVC.

[51]  Qingming Huang,et al.  Image Saliency Detection Video Saliency Detection Co-saliency Detection Temporal RGBD Saliency Detection Motion , 2018 .

[52]  Huchuan Lu,et al.  Hyperfusion-Net: Hyper-densely reflective feature fusion for salient object detection , 2019, Pattern Recognit..

[53]  Yang Cao,et al.  Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Shi-Min Hu,et al.  Global Contrast Based Salient Region Detection , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Huchuan Lu,et al.  Salient Object Detection With Lossless Feature Reflection and Weighted Structural Loss , 2019, IEEE Transactions on Image Processing.

[56]  Qingming Huang,et al.  Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model , 2020, IEEE Transactions on Cybernetics.

[57]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[58]  Ming-Ming Cheng,et al.  EGNet: Edge Guidance Network for Salient Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[59]  Qingming Huang,et al.  Stacked Cross Refinement Network for Edge-Aware Salient Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[60]  Sabine Süsstrunk,et al.  Saliency detection using maximum symmetric surround , 2010, 2010 IEEE International Conference on Image Processing.

[61]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[62]  Dacheng Tao,et al.  Database Saliency for Fast Image Retrieval , 2015, IEEE Transactions on Multimedia.

[63]  Xiaojin Gong,et al.  Adaptive Fusion for RGB-D Salient Object Detection , 2019, IEEE Access.

[64]  Zhuowen Tu,et al.  Deeply Supervised Salient Object Detection with Short Connections , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Weisi Lin,et al.  Saliency detection for stereoscopic images , 2013, 2013 Visual Communications and Image Processing (VCIP).

[66]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[67]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.