Krause's model of opinion dynamics on isolated time scales

We analyze a bounded confidence model, introduced by Krause, on isolated time scales. In this model, each agent takes into account only the assessments of the agents whose opinions are not too far away from its own opinion. We show that the behavior of the model depends strongly on the graininess function μ: If μ takes values in the interval ]0,1], then our discrete time scale model behaves similarly to the classical one, but if μ takes values in ]1,+∞[, then the model has different properties. Simulations are performed to validate the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Janke Dittmer Consensus formation under bounded confidence , 2001 .

[2]  Ulrich Krause,et al.  Opinion dynamics: local and global , 2011 .

[3]  Ewa Girejko,et al.  The existence of solutions for dynamic inclusions on time scales via duality , 2012, Appl. Math. Lett..

[4]  E. Gillam,et al.  Social calls used by a leaf-roosting bat to signal location , 2010, Biology Letters.

[5]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[6]  K. Barton,et al.  Modelling Sensory Limitation: The Role of Tree Selection, Memory and Information Transfer in Bats’ Roost Searching Strategies , 2012, PloS one.

[7]  Ülle Kotta,et al.  Transfer Equivalence and Realization of Nonlinear Input-Output Delta-Differential Equations on Homogeneous Time Scales , 2010, IEEE Transactions on Automatic Control.

[8]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[9]  Delfim F. M. Torres,et al.  The Second Euler-Lagrange Equation of Variational Calculus on Time Scales , 2011, Eur. J. Control.

[10]  Ewa Girejko,et al.  The contingent epiderivative and the calculus of variations on time scales , 2012 .

[11]  M. Bohner,et al.  Periodicity of scalar dynamic equations and applications to population models , 2007 .

[12]  M. Degroot Reaching a Consensus , 1974 .

[13]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.

[14]  S. Hameroff,et al.  Computational Predictions of Volatile Anesthetic Interactions with the Microtubule Cytoskeleton: Implications for Side Effects of General Anesthesia , 2012, PloS one.

[15]  Agnieszka B. Malinowska,et al.  Transversality conditions for infinite horizon variational problems on time scales , 2010, Optim. Lett..

[16]  John N. Tsitsiklis,et al.  Continuous-Time Average-Preserving Opinion Dynamics with Opinion-Dependent Communications , 2009, SIAM J. Control. Optim..

[17]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[18]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[19]  Ülle Kotta,et al.  Realization of nonlinear MIMO system on homogeneous time scales , 2015, Eur. J. Control.

[20]  M. Fenton,et al.  Observational learning in three species of insectivorous bats (Chiroptera) , 1984, Animal Behaviour.

[21]  H. Schnitzler,et al.  Echolocation signals reflect niche differentiation in five sympatric congeneric bat species , 2004, Nature.

[22]  Kamran Safi,et al.  Experimental evidence for group hunting via eavesdropping in echolocating bats , 2009, Proceedings of the Royal Society B: Biological Sciences.

[23]  Christopher S. McMahan,et al.  A Comparison in the Theory of Calculus of Variations on Time Scales with an Application to the Ramsey Model , 2009 .

[24]  John N. Tsitsiklis,et al.  On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity , 2008, IEEE Transactions on Automatic Control.

[25]  Martin Bohner,et al.  The Beverton–Holt dynamic equation , 2007 .