Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.

We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.

[1]  R. Pinal,et al.  Theoretical and experimental considerations on the enthalpic relaxation of organic glasses using differential scanning calorimetry. , 2010, The journal of physical chemistry. B.

[2]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[3]  J. Breitenbach Melt extrusion can bring new benefits to HIV therapy , 2006 .

[4]  Entwicklung oraler und parenteraler Arzneiformen: Bioverfügbarkeit und Stabilität von Immunsuppressiva , 2005 .

[5]  A. Serajuddin,et al.  Influence of pH on release of phenytoin sodium from slow-release dosage forms. , 1993, Journal of pharmaceutical sciences.

[6]  Amrit Paudel,et al.  Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). , 2010, Molecular pharmaceutics.

[7]  J. Breitkreutz Prediction of Intestinal Drug Absorption Properties by Three-Dimensional Solubility Parameters , 1998, Pharmaceutical Research.

[8]  S. Yalkowsky,et al.  Solubility and partitioning V: dependence of solubility on melting point. , 1981, Journal of pharmaceutical sciences.

[9]  Charles E. Martin,et al.  Pharmaceutical Applications of Hot-Melt Extrusion: Part I , 2007, Drug development and industrial pharmacy.

[10]  R. F. Fedors,et al.  A method for estimating both the solubility parameters and molar volumes of liquids , 1974 .

[11]  K. Nagapudi,et al.  Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. , 2010, Journal of pharmaceutical sciences.

[12]  G. Van den Mooter,et al.  Review: physical chemistry of solid dispersions , 2009 .

[13]  J Dressman,et al.  Improving drug solubility for oral delivery using solid dispersions. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  D. Mishra,et al.  Determination of the glass properties of D-mannitol using sorbitol as an impurity. , 1998, Journal of pharmaceutical sciences.

[15]  Patrick Wahl,et al.  Hot Melt Extrusion as a Continuous Pharmaceutical Manufacturing Process , 2013 .

[16]  J. Breitenbach Melt extrusion: from process to drug delivery technology. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[18]  Charles E. Martin,et al.  Pharmaceutical Applications of Hot-Melt Extrusion: Part II , 2007, Drug development and industrial pharmacy.

[19]  S. Yalkowsky,et al.  Solubility and partitioning I: Solubility of nonelectrolytes in water. , 1980, Journal of pharmaceutical sciences.

[20]  R. Pinal,et al.  Calorimetric study and modeling of molecular mobility in amorphous organic pharmaceutical compounds using a modified Adam-Gibbs approach. , 2007, The journal of physical chemistry. B.

[21]  Rodolfo Pinal,et al.  Effect of molecular symmetry on melting temperature and solubility. , 2004, Organic & biomolecular chemistry.

[22]  P York,et al.  Solubility parameters as predictors of miscibility in solid dispersions. , 1999, Journal of pharmaceutical sciences.

[23]  B. Zhou,et al.  Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement. , 2009, International journal of pharmaceutics.

[24]  Christel A. S. Bergström,et al.  Molecular characteristics for solid-state limited solubility. , 2008, Journal of medicinal chemistry.

[25]  T. Arakawa,et al.  Stabilization of protein structure by sugars. , 1982, Biochemistry.

[26]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[27]  L. Allen,et al.  Dissolution rates of corticosteroids utilizing sugar glass dispersions. , 1977, Journal of pharmaceutical sciences.

[28]  Lieven Baert,et al.  Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion--Part I. , 2003, International journal of pharmaceutics.

[29]  S. Riegelman,et al.  Pharmaceutical applications of solid dispersion systems. , 1971, Journal of pharmaceutical sciences.

[30]  A. Serajuddin,et al.  Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. , 1999, Journal of pharmaceutical sciences.

[31]  F. Hirayama,et al.  Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. , 2001, Journal of pharmaceutical sciences.

[32]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[33]  Michelle K. Papp,et al.  Hydrotropic solubilization of poorly water-soluble drugs. , 2010, Journal of pharmaceutical sciences.

[34]  R. Scaffaro,et al.  Reactive compatibilization of PA6/LDPE blends with an ethylene–acrylic acid copolymer and a low molar mass bis-oxazoline , 2003 .

[35]  Kiyohiko Sugano,et al.  Oral Absorption of Poorly Water-Soluble Drugs: Computer Simulation of Fraction Absorbed in Humans from a Miniscale Dissolution Test , 2006, Pharmaceutical Research.

[36]  Christer B. Aakeröy,et al.  Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. , 2009, Journal of the American Chemical Society.

[37]  Jan Van Humbeeck,et al.  Influence of Preparation Methods on Solid State Supersaturation of Amorphous Solid Dispersions: A Case Study with Itraconazole and Eudragit E100 , 2010, Pharmaceutical Research.

[38]  J. Rollinger,et al.  Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. , 2000, Journal of pharmaceutical sciences.

[39]  Shao-jie Wang,et al.  Property of ethylene vinyl acetate copolymer in melting processing , 2006 .

[40]  M. Bele,et al.  Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method. , 2005, International journal of pharmaceutics.

[41]  Charles E. Martin,et al.  Pharmaceutical Extrusion Technology , 2003 .

[42]  E. Reverchon,et al.  Supercritical assisted atomization: A novel technology for microparticles preparation of an asthma-controlling drug , 2005, AAPS PharmSciTech.