Harnessing naturally randomized transcription to infer regulatory relationships among genes

We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level, based on experiments in which genotyping and expression profiling are performed. This approach can be used to build transcriptional regulatory networks and to identify putative regulators of genes. We apply the method to an experiment in yeast, in which genes known to be in the same processes and functions are recovered in the resulting transcriptional regulatory network.

[1]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[2]  H. Akaike A new look at the statistical model identification , 1974 .

[3]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[4]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[5]  Mitchell J. Mergenthaler Nonparametrics: Statistical Methods Based on Ranks , 1979 .

[6]  J. Anderson,et al.  Penalized maximum likelihood estimation in logistic regression and discrimination , 1982 .

[7]  C. Glymour,et al.  STATISTICS AND CAUSAL INFERENCE , 1985 .

[8]  L. Guarente,et al.  Functional dissection and sequence of yeast HAP1 activator , 1989, Cell.

[9]  S Greenland,et al.  Randomization, Statistics, and Causal Inference , 1990, Epidemiology.

[10]  R. Gray,et al.  How to avoid bias when comparing bone marrow transplantation with chemotherapy. , 1991, Bone marrow transplantation.

[11]  T. Keng HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. , 1992, Molecular and cellular biology.

[12]  P. Slonimski,et al.  NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes , 1992, Molecular and cellular biology.

[13]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[14]  K. Willison,et al.  Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. , 1994, Trends in biochemical sciences.

[15]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[16]  A. Baudin-Baillieu,et al.  Functional analysis of YCL09C: Evidence for a role as the regulatory subunit of acetolactate synthase , 1996, Yeast.

[17]  F Sherman,et al.  Review: The Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts , 1996, Yeast.

[18]  P. Sung,et al.  Yeast Rad7-Rad16 Complex, Specific for the Nucleotide Excision Repair of the Nontranscribed DNA Strand, Is an ATP-dependent DNA Damage Sensor* , 1997, The Journal of Biological Chemistry.

[19]  B. Szczęśniak,et al.  Expression of the yeast NAM9 gene coding for mitochondrial ribosomal protein. , 1997, Acta biochimica Polonica.

[20]  E. Friedberg,et al.  The Yeast RAD7 and RAD16 Genes Are Required for Postincision Events during Nucleotide Excision Repair , 1998, The Journal of Biological Chemistry.

[21]  Joseph Heitman,et al.  CNS1 Encodes an Essential p60/Sti1 Homolog in Saccharomyces cerevisiae That Suppresses Cyclophilin 40 Mutations and Interacts with Hsp90 , 1998, Molecular and Cellular Biology.

[22]  R. Gaber,et al.  Cns1 Is an Essential Protein Associated with the Hsp90 Chaperone Complex in Saccharomyces cerevisiae That Can Restore Cyclophilin 40-Dependent Functions in cpr7ΔCells , 1998, Molecular and Cellular Biology.

[23]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[24]  S. Lindquist,et al.  Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Robert O J Weinzierl Mechanisms of Gene Expression: Structure, Function and Evolution of the Basal Transcriptional Machinery , 1999 .

[26]  G. Getz,et al.  The single amino acid changes in the yeast mitochondrial S4 ribosomal protein cause temperature-sensitive defect in the accumulation of mitochondrial 15S rRNA. , 1999, Biochemistry.

[27]  R. Duggleby,et al.  Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. , 1999, Biochemistry.

[28]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.

[29]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[30]  Richard Scheines,et al.  Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data , 2000 .

[31]  M. Eisen,et al.  The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. , 2000, Biochimica et biophysica acta.

[32]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[33]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[36]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[37]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[38]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[39]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[40]  E. Lander,et al.  Detection of regulatory variation in mouse genes , 2002, Nature Genetics.

[41]  P. Spirtes,et al.  Ancestral graph Markov models , 2002 .

[42]  G. Wray,et al.  Abundant raw material for cis-regulatory evolution in humans. , 2002, Molecular biology and evolution.

[43]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[44]  Ronald W. Davis,et al.  Systematic screen for human disease genes in yeast , 2002, Nature Genetics.

[45]  John D. Storey A direct approach to false discovery rates , 2002 .

[46]  Bert Vogelstein,et al.  Allelic Variation in Human Gene Expression , 2002, Science.

[47]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[48]  G. Churchill,et al.  Variation in gene expression within and among natural populations , 2002, Nature Genetics.

[49]  Rachel B. Brem,et al.  Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors , 2003, Nature Genetics.

[50]  B. Yandell,et al.  Dimension reduction for mapping mRNA abundance as quantitative traits. , 2003, Genetics.

[51]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[52]  Richard Scheines,et al.  A Statistical Problem for Inference to Regulatory Structure from Associations of Gene Expression Measurements with Microarrays , 2003, Bioinform..

[53]  R. Spielman,et al.  Natural variation in human gene expression assessed in lymphoblastoid cells , 2003, Nature Genetics.

[54]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[55]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  John D. Storey,et al.  Statistical Significance for Genome-Wide Studies , 2003 .

[57]  S. P. Fodor,et al.  Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays , 2004, Nature Methods.

[58]  Deepayan Sarkar,et al.  Detecting differential gene expression with a semiparametric hierarchical mixture method. , 2004, Biostatistics.

[59]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[60]  J. Buchner,et al.  Cns1 Is an Activator of the Ssa1 ATPase Activity* , 2004, Journal of Biological Chemistry.

[61]  Xin Jie Chen Sal1p, a Calcium-Dependent Carrier Protein That Suppresses an Essential Cellular Function Associated With the Aac2 Isoform of ADP/ATP Translocase in Saccharomyces cerevisiae , 2004, Genetics.

[62]  J. Zhu,et al.  An integrative genomics approach to the reconstruction of gene networks in segregating populations , 2004, Cytogenetic and Genome Research.

[63]  T. Ideker Systems biology 101—what you need to know , 2004, Nature Biotechnology.

[64]  Martin A. Nowak,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004 .

[65]  J. Castle,et al.  An integrative genomics approach to infer causal associations between gene expression and disease , 2005, Nature Genetics.

[66]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  John D. Storey,et al.  Multiple Locus Linkage Analysis of Genomewide Expression in Yeast , 2005, PLoS biology.

[68]  N. Bing,et al.  Genetical Genomics Analysis of a Yeast Segregant Population for Transcription Network Inference , 2005, Genetics.

[69]  John D. Storey,et al.  Genetic interactions between polymorphisms that affect gene expression in yeast , 2005, Nature.

[70]  David Kulp,et al.  Causal Inference of Regulator-Target Pairs by Gene Mapping of Expression Phenotypes , 2005, Systems Biology and Regulatory Genomics.

[71]  Keith Shockley,et al.  Structural Model Analysis of Multiple Quantitative Traits , 2006, PLoS genetics.

[72]  G. Gibson,et al.  Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster , 2007, Nature Genetics.