Multi-label classification systems by the use of supervised clustering

Multi-label classification problem involves finding a model that maps a set of input features to more than one output labels. It is well known that, exploiting label correlations is important for multi-label learning. In this paper, a supervised clustering-based multi-label classification method is proposed that uses supervised clustering for considering label correlations. The proposed approach enhanced the performance of multi-label classification systems in comparison with the state of the art. Experimental results on a number of image, music and text datasets validate the effectiveness of the proposed approach.

[1]  Jesse Read,et al.  A Pruned Problem Transformation Method for Multi-label Classification , 2008 .

[2]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[3]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[4]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[5]  Grigorios Tsoumakas,et al.  Clustering based multi-label classification for image annotation and retrieval , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[6]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[7]  Lu Sun,et al.  A Scalable Clustering-Based Local Multi-Label Classification Method , 2016, ECAI.

[8]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, ICML '05.

[9]  Sebastián Ventura,et al.  A Tutorial on Multilabel Learning , 2015, ACM Comput. Surv..

[10]  Kun Zhang,et al.  Multi-label learning by exploiting label dependency , 2010, KDD.

[11]  Grigorios Tsoumakas,et al.  Correlation-Based Pruning of Stacked Binary Relevance Models for Multi-Label Learning , 2009 .

[12]  Grigorios Tsoumakas,et al.  Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .

[13]  Zhi-Hua Zhou,et al.  A k-nearest neighbor based algorithm for multi-label classification , 2005, 2005 IEEE International Conference on Granular Computing.

[14]  Amanda Clare,et al.  Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.

[15]  Farzana Kabir Ahmad,et al.  Trending Challenges in Multi Label Classification , 2016 .

[16]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[17]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[18]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.