Applying Rough Sets to Information Tables Containing Possibilistic Values

Rough sets are applied to information tables containing imprecisevalues that are expressed in a normal possibility distribution. Amethod of weighted equivalence classes is proposed, where each equivalenceclass is accompanied by a possibilistic degree to which it is an actualone. By using a family of weighted equivalence classes, we derive lowerand upper approximations. The lower and upper approximations coincidewith ones obtained from methods of possible worlds. Therefore, themethod of weighted equivalence classes is justified. When this method isapplied to missing values interpreted possibilistically, it creates the samerelation for indiscernibility as the method of Kryszkiewicz that gave anassumption for indiscernibility of missing values. Using weighted equivalenceclasses correctly derives a lower approximation from the viewpointof possible worlds, although using a class of objects that is not an equivalenceclass does not always derive a lower approximation.

[1]  Hiroshi Sakai,et al.  Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation , 2006, RSCTC.

[2]  Hiroshi Sakai,et al.  Applying Rough Sets to Data Tables Containing Missing Values , 2007, RSEISP.

[3]  Alexis Tsoukiàs,et al.  Incomplete Information Tables and Rough Classification , 2001, Comput. Intell..

[4]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[5]  Rafal Latkowski,et al.  Flexible Indiscernibility Relations for Missing Attribute Values , 2005, Fundam. Informaticae.

[6]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[7]  Jerzy Stefanowski,et al.  Rough classification in incomplete information systems , 1989 .

[8]  Simon Parsons,et al.  Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases" , 1996, IEEE Trans. Knowl. Data Eng..

[9]  Yee Leung,et al.  Maximal consistent block technique for rule acquisition in incomplete information systems , 2003, Inf. Sci..

[10]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[11]  Rafal Latkowski On Decomposition for Incomplete Data , 2003, Fundam. Informaticae.

[12]  Salvatore Greco,et al.  Handling Missing Values in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 1999, RSFDGrC.

[13]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[14]  Patrick Bosc,et al.  An initial approach to the evaluation of possibilistic queries addressed to possibilistic databases , 2003, Fuzzy Sets Syst..

[15]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[16]  Hiroshi Sakai Effective Procedures for Handling Possible Equivalence Relations in Non-deterministic Information Systems , 2001, Fundam. Informaticae.

[17]  Jerzy W. Grzymala-Busse,et al.  Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation , 2004, Trans. Rough Sets.

[18]  Hiroshi Sakai,et al.  Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion , 2005, MDAI.

[19]  Yanyong Guan,et al.  Set-valued information systems , 2006, Inf. Sci..

[20]  Zdzislaw Pawlak,et al.  Rough classification , 1984, Int. J. Hum. Comput. Stud..

[21]  Hiroshi Sakai,et al.  Basic Algorithms and Tools for Rough Non-deterministic Information Analysis , 2004, Trans. Rough Sets.

[22]  Hiroshi Sakai,et al.  Applying Rough Sets to Information Tables Containing Probabilistic Values , 2007, MDAI.

[23]  Hiroshi Sakai,et al.  Rough Sets Handling Missing Values Probabilistically Interpreted , 2005, RSFDGrC.

[24]  Hiroshi Sakai,et al.  Rough-set-based approaches to data containing incomplete information: possibility-based cases , 2005, LAPTEC.

[25]  Jerzy W. Grzymala-Busse,et al.  On the Unknown Attribute Values in Learning from Examples , 1991, ISMIS.

[26]  Marzena Kryszkiewicz,et al.  Data mining in incomplete information systems from rough set perspective , 2000 .

[27]  Alain Pirotte,et al.  Imperfect Information in Relational Databases , 1996, Uncertainty Management in Information Systems.

[28]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[29]  Hiroshi Sakai,et al.  An Application of Discernibility Functions to Generating Minimal Rules in Non-Deterministic Information Systems , 2006, J. Adv. Comput. Intell. Intell. Informatics.

[30]  Gösta Grahne,et al.  The Problem of Incomplete Information in Relational Databases , 1991, Lecture Notes in Computer Science.

[31]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[32]  Patrick Bosc,et al.  About the processing of possibilistic queries involving a difference operation , 2006, Fuzzy Sets Syst..

[33]  Jerzy W. Grzymala-Busse Incomplete Data and Generalization of Indiscernibility Relation, Definability, and Approximations , 2005, RSFDGrC.

[34]  Marzena Kryszkiewicz,et al.  Rules in Incomplete Information Systems , 1999, Inf. Sci..

[35]  Alexis Tsoukiàs,et al.  On the Extension of Rough Sets under Incomplete Information , 1999, RSFDGrC.

[36]  Hiroshi Sakai Some Issues on Nondeterministic Knowledge Bases with Incomplete and Selective Information , 1998, Rough Sets and Current Trends in Computing.