Multiple Uncertainties in Time-Variant Cosmological Particle Data

Though the mediums for visualization are limited, the potential dimensions of a dataset are not. In many areas of scientific study, understanding the correlations between those dimensions and their uncertainties is pivotal to mining useful information from a dataset. Obtaining this insight can necessitate visualizing the many relationships among temporal, spatial, and other dimensionalities of data and its uncertainties. We utilize multiple views for interactive dataset exploration and selection of important features, and we apply those techniques to the unique challenges of cosmological particle datasets. We show how interactivity and incorporation of multiple visualization techniques help overcome the problem of limited visualization dimensions and allow many types of uncertainty to be seen in correlation with other variables.

[1]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[2]  M. S. Warren,et al.  A parallel hashed Oct-Tree N-body algorithm , 1993, Supercomputing '93.

[3]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[4]  Kwan-Liu Ma,et al.  Quantitative and comparative visualization applied to cosmological simulations , 2006 .

[5]  Ronald A. Rensink,et al.  Change blindness: past, present, and future , 2005, Trends in Cognitive Sciences.

[6]  Michael S. Warren,et al.  A parallel hashed oct-tree N-body algorithm , 1993, Supercomputing '93. Proceedings.

[7]  Michael S. Warren,et al.  Robustness of Cosmological Simulations. I. Large-Scale Structure , 2004, astro-ph/0411795.

[8]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[9]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[10]  M ICHAEL S. W ARREN Robustness of Cosmological Simulations I: Large Scale Structure , 2008 .

[11]  Chi-Wing Fu,et al.  Visualizing Large-Scale Uncertainty in Astrophysical Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[12]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[13]  Jock D. Mackinlay,et al.  Visualizing data with bounded uncertainty , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[14]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.

[15]  Kwan-Liu Ma,et al.  An Integrated Exploration Approach to Visualizing Multivariate Particle Data , 2008, Computing in Science & Engineering.

[16]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[17]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[18]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[19]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[20]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[21]  Thomas Ertl,et al.  Hierarchical splatting of scattered 4D data , 2004, IEEE Computer Graphics and Applications.