Outgoing modal solutions for Galbrun's equation in helioseismology
暂无分享,去创建一个
Florian Faucher | Laurent Gizon | Ha Pham | Hélène Barucq | Damien Fournier | L. Gizon | H. Barucq | Ha Pham | F. Faucher | D. Fournier
[1] D. Yafaev. A note on the Schrödinger operator with a long-range potential , 2010, Letters in Mathematical Physics.
[2] D. Yafaev. The low energy scattering for slowly decreasing potentials , 1982 .
[3] Laurent Gizon,et al. Time-Distance Helioseismology: The Forward Problem for Random Distributed Sources , 2002 .
[4] E. Coddington. An Introduction to Ordinary Differential Equations , 1961 .
[5] Chris S. Hanson,et al. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows , 2016, 1611.01666.
[6] M. Zubeldia. Limiting absorption principle for the electromagnetic Helmholtz equation with singular potentials , 2011, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] Shmuel Agmon,et al. Analyticity properties in scattering and spectral theory for Schrödinger operators with long-range radial potentials , 1992 .
[8] Peter Monk,et al. Finite Element Methods for Maxwell's Equations , 2003 .
[9] B. Fleck,et al. Towards an explanation of features in the diagnostic diagram of a model atmosphere I. Linear wave equations with convenient invariants , 2003 .
[10] T. Hohage,et al. Global uniqueness in a passive inverse problem of helioseismology , 2019, Inverse Problems.
[11] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[13] Fabien Treyssède,et al. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. , 2003, The Journal of the Acoustical Society of America.
[14] H. Barucq,et al. Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology , 2020, ESAIM: Mathematical Modelling and Numerical Analysis.
[15] P. Martin,et al. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .
[16] T. G. Cowling,et al. The non-radial oscillations of polytropic stars , 1941 .
[17] G. Legendre,et al. Rayonnement acoustique dans un fluide en écoulement : analyse mathématique et numérique de l'équation de Galbrun , 2003 .
[18] H. Galbrun. Propagation d'une onde sonore dans l'atmosphère et théorie des zones de silence , 1931 .
[19] Hélène Barucq,et al. Efficient and Accurate Algorithm for the Full Modal Green's Kernel of the Scalar Wave Equation in Helioseismology , 2020, SIAM J. Appl. Math..
[20] France.,et al. Asymptotic g modes: Evidence for a rapid rotation of the solar core , 2017, 1708.00259.
[21] S. M. Chitre,et al. The Current State of Solar Modeling , 1996, Science.
[22] J. Ostriker,et al. On the stability of differentially rotating bodies , 1967 .
[23] C2 representations of the solar background coefficients for the model S-AtmoI , 2020 .
[24] M. Bôcher. On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic , 1900 .
[25] Marc Duruflé,et al. Atmospheric Radiation Boundary Conditions for the Helmholtz Equation , 2018 .
[26] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[27] Hiroyasu Ando,et al. Nonradial Oscillations of Stars , 1989 .
[28] Chris S. Hanson,et al. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology , 2017, 1709.02156.
[29] J. Zinn-Justin,et al. Linear adiabatic stellar pulsation , 1993 .