Parameter structure identification using tabu search and simulated annealing
暂无分享,去创建一个
P. Patrick Wang | Chunmiao Zheng | C. Zheng | P. Wang | P. Wang | P. Wang
[1] Shah Shah,et al. Error Analysis in History Matching: The Optimum Level of Parameterization , 1978 .
[2] W. Yeh. Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .
[3] William W.-G. Yeh,et al. Aquifer parameter identification with optimum dimension in parameterization , 1981 .
[4] K. H. Coats,et al. A New Technique for Determining Reservoir Description from Field Performance Data , 1970 .
[5] J. C. Ramírez,et al. Estimation of aquifer parameters under transient and steady-state conditions , 1984 .
[6] W. Yeh,et al. Sequential estimation of aquifer parameters , 1988 .
[7] Dan Rosbjerg,et al. A Comparison of Four Inverse Approaches to Groundwater Flow and Transport Parameter Identification , 1991 .
[8] S. Ranjithan,et al. Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .
[9] Antoine Mensch,et al. An inverse technique for developing models for fluid flow in fracture systems using simulated annealing , 1993 .
[10] S. P. Neuman,et al. Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona , 1982 .
[11] B. Noble. Applied Linear Algebra , 1969 .
[12] Irfan A. Khan,et al. Inverse Problem in Ground Water: Model Development , 1986 .
[13] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[14] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[15] William W.-G. Yeh,et al. A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis , 1992 .
[16] S. Yakowitz,et al. A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers , 1975 .
[17] Probability of plume interception using conditional simulation of hydraulic head and inverse modeling , 1991 .
[18] Richard L. Cooley,et al. A method of estimating parameters and assessing reliability for models of steady state Groundwater flow: 2. Application of statistical analysis , 1979 .
[19] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[20] D. McKinney,et al. Genetic algorithm solution of groundwater management models , 1994 .
[21] Fred W. Glover,et al. Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..
[22] R. Zhang,et al. Applied Contaminant Transport Modeling: Theory and Practice , 1991 .
[23] G. Marsily,et al. An Automatic Solution for the Inverse Problem , 1971 .
[24] W. Yeh,et al. Identification of Parameter Structure in Groundwater Inverse Problem , 1985 .
[25] Robert A. Marryott,et al. Optimal Groundwater Management: 1. Simulated Annealing , 1991 .
[26] David E. Dougherty,et al. Optimal groundwater management: 2. Application of simulated annealing to a field-scale contamination site , 1993 .
[27] William W.-G. Yeh,et al. Aquifer parameter identification with kriging and optimum parameterization , 1983 .
[28] M. Hill. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression , 1992 .
[29] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[30] Akhil Datta-Gupta,et al. Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm , 1995 .
[31] S. P. Neuman,et al. Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .
[32] J. P. Delhomme,et al. Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach , 1979 .