Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

[1]  Markus Gross,et al.  The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations , 2017 .

[2]  William H. Lipscomb,et al.  Biogeochemistry of CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual zbgc_colpkg modifications to Version 5 , 2016 .

[3]  D. N. Walters,et al.  The Met Office Global Coupled model 2.0 (GC2) configuration , 2015 .

[4]  Adam A. Scaife,et al.  Global Seasonal forecast system version 5 (GloSea5): a high‐resolution seasonal forecast system , 2015 .

[5]  A. Keen,et al.  A sensitivity study of the sea ice simulation in the global coupled climate model, HadGEM3 , 2014 .

[6]  Andrew Ryan,et al.  Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts , 2013 .

[7]  John Siddorn,et al.  GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications , 2013 .

[8]  Malcolm Davidson,et al.  CryoSat‐2 estimates of Arctic sea ice thickness and volume , 2013 .

[9]  A. Keen,et al.  A case study of a modelled episode of low Arctic sea ice , 2013, Climate Dynamics.

[10]  D. Bi,et al.  A sea-ice sensitivity study with a global ocean-ice model , 2012 .

[11]  S. Morin,et al.  Numerical and experimental investigations of the effective thermal conductivity of snow , 2011 .

[12]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[13]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[14]  Ron Kwok,et al.  Uncertainty in modeled Arctic sea ice volume , 2011 .

[15]  I. D. Culverwell,et al.  Geoscientific Model Development Design and implementation of the infrastructure of HadGEM 3 : the next-generation Met Office climate modelling system , 2011 .

[16]  R. Kwok,et al.  Uncertainty in modeled arctic sea ice volume. J Geophys Res 117:C00D06 , 2011 .

[17]  Chris Harris,et al.  Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system , 2010 .

[18]  Edgar L. Andreas,et al.  Parametrizing turbulent exchange over summer sea ice and the marginal ice zone , 2010 .

[19]  Elizabeth C. Hunke,et al.  Thickness sensitivities in the CICE sea ice model , 2010 .

[20]  M. Grae Worster,et al.  Desalination processes of sea ice revisited , 2009 .

[21]  T. Fichefet,et al.  Simulating the mass balance and salinity of Arctic and Antarctic sea ice 2: Importance of sea ice salinity variations , 2009 .

[22]  R. Pirazzini Factors controlling the surface energy budget over snow and ice , 2008 .

[23]  D. Feltham,et al.  Consistent and contrasting decadal Arctic sea ice thickness predictions from a highly optimized sea ice model , 2007 .

[24]  R. Gerdes,et al.  Sensitivities and uncertainties in a coupled regional atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice , 2007 .

[25]  Hajo Eicken,et al.  Thermal conductivity of landfast Antarctic and Arctic sea ice , 2007 .

[26]  William H. Lipscomb,et al.  Ridging, strength, and stability in high-resolution sea ice models , 2007 .

[27]  William H. Lipscomb,et al.  Evaluation of the sea ice simulation in a new coupled atmosphere‐ocean climate model (HadGEM1) , 2006 .

[28]  T. Haskell,et al.  Direct measurement of sea ice thermal conductivity: No surface reduction , 2006 .

[29]  Seymour W. Laxon,et al.  Optimization of a Sea Ice Model Using Basinwide Observations of Arctic Sea Ice Thickness, Extent, and Velocity , 2006 .

[30]  W. Lipscomb,et al.  Sensitivity analysis and parameter tuning scheme for global sea-ice modeling , 2006 .

[31]  T. Fichefet,et al.  On the sensitivity of undeformed Arctic sea ice to its vertical salinity profile , 2005 .

[32]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[33]  William H. Lipscomb,et al.  Modeling Sea Ice Transport Using Incremental Remapping , 2004 .

[34]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[35]  John K. Dukowicz,et al.  The Elastic Viscous Plastic Sea Ice Dynamics Model in General Orthogonal Curvilinear Coordinates on a Sphere—Incorporation of Metric Terms , 2002 .

[36]  J. Curry,et al.  Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations , 2001 .

[37]  W. Lipscomb Remapping the thickness distribution in sea ice models , 2001 .

[38]  Marika M. Holland,et al.  Simulating the ice‐thickness distribution in a coupled climate model , 2001 .

[39]  E. Hunke The Elastic-Viscous-Plastic Sea Ice Dynamics Model , 2001 .

[40]  H. Douville,et al.  A comparison of four snow models using observations from an alpine site , 1999 .

[41]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[42]  M. König,et al.  The thermal conductivity of seasonal snow , 1997, Journal of Glaciology.

[43]  G. Maykut,et al.  Solar heating of the Arctic mixed layer , 1995 .

[44]  William D. Hibler,et al.  Ridging and strength in modeling the thickness distribution of Arctic sea ice , 1995 .

[45]  M. Mcphee Turbulent Heat Flux in the Upper Ocean Under Sea Ice , 1992 .

[46]  M. J. P. Cullen,et al.  A conservative split‐explicit integration scheme with fourth‐order horizontal advection , 1991 .

[47]  John S. Wettlaufer,et al.  Heat flux at the ice‐ocean interface , 1991 .

[48]  A. Semtner,et al.  A Numerical Study of Sea Ice and Ocean Circulation in the Arctic , 1987 .

[49]  N. K. Sinha,et al.  Growth Rate and Salinity Profile of First-Year Sea Ice in the High Arctic , 1981, Journal of Glaciology.

[50]  William D. Hibler,et al.  Modeling a variable thickness sea ice cover , 1980 .

[51]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[52]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[53]  D. Rothrock,et al.  The energetics of the plastic deformation of pack ice by ridging , 1975 .

[54]  A. Semtner A MODEL FOR THE THERMODYNAMIC GROWTH OF SEA ICE IN NUMERICAL INVESTIGATIONS OF CLIMATE , 1975 .

[55]  G. Maykut,et al.  Some results from a time‐dependent thermodynamic model of sea ice , 1971 .

[56]  E. Lewis Heat Flow through Winter Ice , 1967 .

[57]  W. Schwarzacher Pack‐ice studies in the Arctic Ocean , 1959 .