A Structural Model of Nitro‐Porphyrin Dyes Based on Spectroscopy and Density Functional Theory

Nitro‐porphyrins are an important class of commercial dyes with a range of potential applications. The nitro group is known to dramatically affect the photophysics of the porphyrin, but there are few systematic investigations of the contributing factors. To address this deficiency, we present spectroscopic studies of a series of nitro‐porphyrins, accompanied by density functional theory calculations to elucidate their structures. In particular, we explore how the positions of the substituents affect the energy levels and nuclear geometry. As expected, nitro groups on the meso‐phenyl rings cause small changes to the orbital energies by induction, while those at the β‐pyrrole positions more strongly conjugate into the aromatic system. In addition, however, we find evidence that β‐pyrrole nitro groups distort the porphyrin, creating two non‐planar conformations with distinct properties. This unexpected result helps explain the anomalous photophysics of nitro‐porphyrins reported throughout the literature, including inhomogeneous line broadening and biexponential fluorescence decay. © 2017 Wiley Periodicals, Inc.

[1]  M. Crossley,et al.  Use of NMR spectroscopy to determine bond orders between .beta.- and .beta.'-pyrrolic positions of porphyrins: structural differences between free-base porphyrins and metalloporphyrins , 1992 .

[2]  T. Elsaesser,et al.  Femtosecond spectroscopy of excited-state proton transfer in 2-(2′-hydroxyphenyl)benzothiazole , 1988 .

[3]  D. Dolphin,et al.  Nitrooctaethylporphyrins: synthesis, optical and redox properties , 1985 .

[4]  H. Imanaga,et al.  The Fluorescence Properties of (2-Nitro-5,10,15,20- tetraphenylporphyrinato)zinc , 1992 .

[5]  A. Harriman,et al.  Luminescence of porphyrins and metalloporphyrins. Part 4.—Fluorescence of substituted tetraphenylporphyrins , 1981 .

[6]  Kevin M. Smith,et al.  Synthesis and reactions of meso-(p-nitrophenyl)porphyrins , 2004 .

[7]  O. R. Nascimento,et al.  Catalytic activity of nitro- and carboxy-substituted iron porphyrins in hydrocarbon oxidation: Homogeneous solution and supported systems , 2001 .

[8]  Kevin M. Smith,et al.  Coplanar conjugated β-nitroporphyrins and some aspects of nitration of porphyrins with N2O4 , 2000 .

[9]  K. Smith,et al.  Concerning meso- tetraphenylporphyrin purification. , 1975, Journal of the Chemical Society. Perkin transactions 1.

[10]  S. Zuo,et al.  Absorption and EPR spectra of some porphyrins and metalloporphyrins , 2007 .

[11]  D. Mansuy,et al.  New Metalloporphyrins with Extremely Altered Redox Properties: Synthesis, Structure, and Facile Reduction to Air-Stable π-Anion Radicals of Zinc and Nickel β-Heptanitroporphyrins , 1997 .

[12]  S. J. Cole,et al.  Ligand binding by metalloporphyrins. III. Thermodynamic functions for the addition of substituted pyridines to nickel(II) and zinc(II) porphyrins , 1972 .

[13]  O. W. Kolling Soret red shift for zinc tetraphenylporphine in the presence of uncharged Lewis bases , 1979 .

[14]  M. Crossley,et al.  Tautomerism in 2-substituted 5,10,15,20-tetraphenylporphyrins , 1986 .

[15]  N. Mamardashvili,et al.  Spectrophotometric study of acid-base and complexing properties of 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin in acetonitrile , 2014, Russian Journal of General Chemistry.

[16]  S. P. Rath,et al.  Self-assembly of cobalt(II) and zinc(II) tetranitrooctaethylporphyrin via bidentate axial ligands: synthesis, structure, surface morphology and effect of axial coordination , 2014 .

[17]  K. Tomizaki,et al.  Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads , 2004 .

[18]  K. Kadish,et al.  Asymmetrically Crowded "Push-Pull" Octaphenylporphyrins with Modulated Frontier Orbitals: Syntheses, Photophysical, and Electrochemical Redox Properties. , 2016, Inorganic chemistry.

[19]  S. Bachilo,et al.  Pathways for photoinduced electron transfer in meso-nitro-phenyl-octaethylporphyrins and their chemical dimers , 1999 .

[20]  Glenn C. Vogel,et al.  Thermodynamic study of the adduct formation of zinc tetraphenylporphine with several neutral donors in cyclohexane , 1977 .

[21]  P. Seybold,et al.  Porphyrins. XIII: Fluorescence spectra and quantum yields , 1969 .

[22]  K. Suslick,et al.  Push-pull Porphyrins as Nonlinear Optical Materials , 1992 .

[23]  S. Bachilo,et al.  Photophysical properties of mesonitrophenyl-substituted porphyrins and their dimers at 295 K , 1999 .

[24]  V. Krishnan,et al.  Excited singlet state intramolecular charge transfer in di and trinitrotetraphenylporphyrins , 1997 .

[25]  Duncan M. Tooke,et al.  Template-assisted ligand encapsulation; the impact of an unusual coordination geometry on a supramolecular pyridylphosphine-Zn(II)porphyrin assembly. , 2005, Inorganic chemistry.

[26]  K. Kadish,et al.  β-Nitro-substituted free-base, iron(III) and manganese(III) tetraarylporphyrins: synthesis, electrochemistry and effect of the NO2 substituent on spectra and redox potentials in non-aqueous media , 2013 .

[27]  C. Kirmaier,et al.  Dynamic Photophysical Properties of Conformationally Distorted Nickel Porphyrins. 1. Nickel(II) Dodecaphenylporphyrin , 1996 .

[28]  S. Dahal,et al.  Charge transfer excited states of zinc(II) derivatives of β-substituted dinitrotetraphenylporphyrin , 1995 .

[29]  S. Rayati,et al.  Comparative study of catalytic activity of some biomimetic models of cytochrome P450 in oxidation of olefins with tetra-n-butylammonium periodate: Electron-rich Mn-porphyrins versus the electron-deficient ones , 2011 .

[30]  J. B. Kim,et al.  A mechanistic study of the synthesis and spectral properties of meso-tetraarylporphyrins. , 1972, Journal of the American Chemical Society.

[31]  V. Krishnan,et al.  Intramolecular electron transfer in donor-acceptor systems. Porphyrins bearing trinitroaryl acceptor group , 1985 .

[32]  M. Senge,et al.  Interplay of Axial Ligation, Hydrogen Bonding, Self-Assembly, and Conformational Landscapes in High-Spin Ni(II) Porphyrins , 2004 .

[33]  Density-difference maps in quantum chemistry , 1982 .

[34]  S. Ito,et al.  Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells , 2011 .

[35]  N. Hush,et al.  The Mechanism of Inner-Hydrogen Migration in Free Base Porphyrin: Ab Initio MP2 Calculations , 1995 .

[36]  Joseph T. Hupp,et al.  Electronic Stark Effect Studies of a Porphyrin-Based Push−Pull Chromophore Displaying a Large First Hyperpolarizability: State-Specific Contributions to β , 1998 .

[37]  Avijit Sen,et al.  Synthesis, spectral and electrochemical properties of donor/acceptor substituted fluoroarylporphyrins , 1996 .

[38]  B. Röder,et al.  Correlation of photophysical parameters with macrocycle distortion in porphyrins with graded degree of saddle distortion , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[39]  C. Farley,et al.  Tuning the Structure and Photophysics of a Fluorous Phthalocyanine Platform. , 2016, The journal of physical chemistry. A.

[40]  B. Desmazières,et al.  Efficient Preparation of the .alpha.,.alpha.,.beta.,.beta.-Atropoisomer of meso-Tetrakis(o-aminophenyl)porphyrin , 1995 .

[41]  Y. Ivanova,et al.  Dependence of the basic properties of meso-nitro-substituted derivatives of β-octaethylporphyrin on the nature of substituents , 2014, Russian Journal of Physical Chemistry A.

[42]  K. Kadish,et al.  Synthesis and electrochemistry of β-pyrrole nitro-substituted cobalt(II) porphyrins. The effect of the NO₂ group on redox potentials, the electron transfer mechanism and catalytic reduction of molecular oxygen in acidic media. , 2014, Dalton transactions.

[43]  Dongho Kim,et al.  Porphyrin boxes constructed by homochiral self-sorting assembly: optical separation, exciton coupling, and efficient excitation energy migration. , 2004, Journal of the American Chemical Society.

[44]  T. Moore,et al.  PHOTOPHYSICAL PROPERTIES OF 2‐NITRO‐5,10,15,20‐TETRA‐p‐TOLYLPORPHYRINS , 1990, Photochemistry and photobiology.

[45]  Shi Weimin,et al.  An alternative approach to amino porphyrins , 2010 .

[46]  M. Crossley,et al.  Kinetics of tautomerism in 2-substituted 5,10,15,20-tetraphenylporphyrins: directionality of proton transfer between the inner nitrogens , 1987 .

[47]  Kevin M. Smith,et al.  Photophysical properties of conformationally distorted metal-free porphyrins. Investigation into the deactivation mechanisms of the lowest excited singlet state , 1994 .

[48]  T. Elsaesser,et al.  Excited-state proton transfer in 2-(2'-hydroxyphenyl)benzothiazole transient electronic absorption measured on the picosecond time scale , 1988 .

[49]  Kevin M. Smith,et al.  Investigations on the directive effects of a single meso -substituent via nitration of 5,12,13,17,18-pentasubstituted porphyrins: syntheses of conjugated β-nitroporphyrins , 2001 .

[50]  Yanhui Zhang,et al.  A Green Process for Oxidation of p-Nitrotoluene Catalyzed by Metalloporphyrins under Mild Conditions , 2006 .

[51]  Mario Joseph Nappa,et al.  The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc , 1978 .

[52]  T. Ogawa,et al.  Synthesis of 2,7,12,17-tetraaryl-3,8,13,18-tetranitroporphyrins; electronic effects on aggregation properties of porphyrins , 1998 .

[53]  S. Bachilo,et al.  Photoinduced electron transfer in meso-nitrophenyl-substituted porphyrins and their chemical dimers , 2000 .

[54]  A. Maciejewski,et al.  Photophysical studies of porphyrins and metalloporphyrins: Accurate measurements of fluorescence spectra and fluorescence quantum yields for Soret band excitation of zinc tetraphenylporphyrin , 2004 .

[55]  Synthesis and characterization of a novel series of meso (nitrophenyl) and meso (carboxyphenyl) substituted porphyrins , 2000 .

[56]  M. Neves,et al.  Meso-Tetraarylporphyrins Bearing Nitro or Amino Groups: Synthetic Strategies and Reactivity Profiles , 2013 .

[57]  A. Hoek,et al.  On the nature of the fluorescent state in beta-nitrotetraarylporphyrins. , 1998 .

[58]  M. Senge,et al.  5,10-A2B2-type meso-substituted porphyrins--a unique class of porphyrins with a realigned dipole moment. , 2011, Chemistry.

[59]  D. Mansuy,et al.  Synthesis and remarkable properties of iron β-polynitroporphyrins as catalysts for monooxygenation reactions , 1994 .

[60]  M. Neves,et al.  Electrochemical and spectroscopic properties of Cu(II) β-nitro meso-tetra(pentafluorophenyl)porphyrins , 1996 .

[61]  O. W. Kolling Comparison of donor-acceptor parameters in nonaqueous solvents , 1982 .

[62]  R. Ion,et al.  Photocurrent generation in an electrochemical cell with substituted metalloporphyrins , 2000 .

[63]  Toomas Tamm,et al.  UV-visible spectra of some nitro-substituted porphyrins , 1995 .

[64]  G. Fleming,et al.  Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes , 1996 .

[65]  T. Umeyama,et al.  Substituent effects of porphyrins on structures and photophysical properties of amphiphilic porphyrin aggregates. , 2008, The journal of physical chemistry. B.

[66]  T. Elsaesser,et al.  Excited-state proton transfer in 2-(2'-hydroxyphenyl)benzothiazole: formation of the anion in polar solvents , 1987 .

[67]  T. Nyokong,et al.  Synthesis and photochemical characterization of a zinc phthalocyanine-zinc porphyrin heterotrimer and heterononamer. , 2005, Dalton transactions.

[68]  I. Sazanovich,et al.  Photophysical and structural properties of saddle-shaped free base porphyrins: Evidence for an "orthogonal" dipole moment , 2001 .

[69]  Kevin M. Smith,et al.  Triplet Dynamics of Conformationally Distorted Porphyrins: Time-Resolved Electron Paramagnetic Resonance , 1994 .

[70]  Alexandra B. Ormond,et al.  Effects of substituents on the photophysical properties of symmetrical porphyrins , 2013 .