Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways.

Article de synthese a propos de l'existence d'une association entre la transmission par l'activation des recepteurs NMDA et les contacts explorateurs entre les neurones en developpement, pour definir une plasticite plus prononcee au niveau de certaines regions du cerveau, notamment les voies visuelles

[1]  S. Kaplan The Physiology of Thought , 1950 .

[2]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[3]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[4]  R W Guillery,et al.  The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat , 1970, The Journal of comparative neurology.

[5]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[6]  R. Guillery Binocular competition in the control of geniculate cell growth , 1972, The Journal of comparative neurology.

[7]  C. Blakemore,et al.  Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period , 1974, The Journal of physiology.

[8]  J. Cronly-Dillon,et al.  Specificity of regenerating optic fibres for left and right optic tecta in goldfish , 1974, Nature.

[9]  M. Keating,et al.  Visual deprivation and intertectal neuronal connexions in Xenopus laevis , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  M. Jacobson,et al.  Discontinuous mapping of retina onto tectum innervated by both eyes , 1975, Brain Research.

[11]  P. D. Spear,et al.  Postcritical-period reversal of effects of monocular deprivation on striate cortex cells in the cat. , 1976, Journal of neurophysiology.

[12]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[13]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[15]  C. Blakemore,et al.  The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. , 1978, The Journal of physiology.

[16]  M. Law,et al.  Eye-specific termination bands in tecta of three-eyed frogs. , 1978, Science.

[17]  D. Hubel,et al.  The development of ocular dominance columns in normal and visually deprived monkeys , 1980, The Journal of comparative neurology.

[18]  W. Singer,et al.  The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. , 1981, The Journal of physiology.

[19]  T E Spraker,et al.  Cross‐correlation analysis of the maintained discharge of rabbit retinal ganglion cells. , 1981, The Journal of physiology.

[20]  R. L. Holland,et al.  Motor nerve sprouting. , 1981, Annual review of neuroscience.

[21]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[22]  M. Law,et al.  Anatomy and physiology of experimentally produced striped tecta , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  S. Sherman,et al.  Organization of visual pathways in normal and visually deprived cats. , 1982, Physiological reviews.

[24]  R L Meyer,et al.  Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. , 1982, Science.

[25]  W. Singer,et al.  Central gating of developmental plasticity in kitten visual cortex , 1982, The Journal of physiology.

[26]  D. Willshaw,et al.  Compound eyes project stripes on the optic tectum in Xenopus , 1982, Nature.

[27]  S M Archer,et al.  Abnormal development of kitten retino-geniculate connectivity in the absence of action potentials. , 1982, Science.

[28]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[29]  S. Udin,et al.  Abnormal visual input leads to development of abnormal axon trajectories in frogs , 1983, Nature.

[30]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[31]  R L Meyer,et al.  Eye dominance columns from an isogenic double-nasal frog eye. , 1983, Science.

[32]  M. Ariel,et al.  Effects of 6-hydroxydopamine on visual deprivation in the kitten striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D. Mastronarde Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. , 1983, Journal of neurophysiology.

[34]  R L Meyer,et al.  Tetrodotoxin inhibits the formation of refined retinotopography in goldfish. , 1983, Brain research.

[35]  J. Schmidt,et al.  Activity sharpens the map during the regeneration of the retinotectal projection in goldfish , 1983, Brain Research.

[36]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[37]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[38]  D. Edwards,et al.  Intraocular injection of tetrodotoxin in goldfish decreases fast axonal transport of [3H]glucosamine-labeled materials in optic axons , 1984, Brain Research.

[39]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[40]  M. Cynader,et al.  Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens , 1984, Nature.

[41]  J. Schmidt,et al.  Activity and the formation of ocular dominance patches in dually innervated tectum of goldfish , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  S. Easter,et al.  An evaluation of the hypothesis of shifting terminals in goldfish optic tectum , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  N. Daw,et al.  DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) depletes noradrenaline in kitten visual cortex without altering the effects of monocular deprivation , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  H. Wigström,et al.  On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. , 1985, Acta physiologica Scandinavica.

[45]  S C McLoon,et al.  Evidence for shifting connections during development of the chick retinotectal projection , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  D H Perkel,et al.  The function of dendritic spines: a review of theoretical issues. , 1985, Behavioral and neural biology.

[47]  W B Levy,et al.  Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus , 1986, The Journal of comparative neurology.

[48]  W. Singer,et al.  Modulation of visual cortical plasticity by acetylcholine and noradrenaline , 1986, Nature.

[49]  M. Stryker,et al.  Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  S M Archer,et al.  A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  T. Teyler,et al.  Long-term potentiation in the goldfish optic tectum , 1986, Brain Research.

[52]  S. B. Kater,et al.  Suppression of neurite elongation and growth cone motility by electrical activity. , 1986, Science.

[53]  M. Stryker,et al.  Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity , 1986, Nature.

[54]  Increased potentiation of postsynaptic responses correlates with sensitive period during optic nerve regeneration in goldfish , 1987 .

[55]  T. Bliss,et al.  Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by d(−)aminophosphonovalerate , 1987, Neuroscience.

[56]  E. Debski,et al.  N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. B. Langdon,et al.  Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands, strychnine, and kynurenic acid , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Josef P. Rauschecker,et al.  Ketamine—xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex , 1987, Nature.

[59]  T. Tsumoto,et al.  NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats , 1987, Nature.

[60]  G. Collingridge The role of NMDA receptors in learning and memory , 1987, Nature.

[61]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[62]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[63]  W. Singer,et al.  Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. , 1987, Science.

[64]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[65]  N. Swindale,et al.  Role of visual experience in promoting segregation of eye dominance patches in the visual cortex of the cat , 1988, The Journal of comparative neurology.

[66]  M. Stryker,et al.  Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[67]  W. Singer,et al.  Pharmacological induction of use-dependent receptive field modifications in the visual cortex. , 1988, Science.

[68]  M. Sur Development and plasticity of retinal X and Y axon terminations in the cat's lateral geniculate nucleus. , 1988, Brain, behavior and evolution.

[69]  R. Nicoll,et al.  The current excitement in long term potentiation , 1988, Neuron.

[70]  S B Udin,et al.  Formation of topographic maps. , 1988, Annual review of neuroscience.

[71]  T. Teyler,et al.  A critical period for long-term potentiation in the developing rat visual cortex , 1988, Brain Research.

[72]  Hollis T. Cline,et al.  NMDA receptor antagonists disrupt the retinotectal topographic map , 1989, Neuron.

[73]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.