High-order phase-field model with the local and second-order max-entropy approximants

[1]  T. Rabczuk,et al.  A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement , 2016 .

[2]  Timon Rabczuk,et al.  Phase-field analysis of finite-strain plates and shells including element subdivision , 2016 .

[3]  Timon Rabczuk,et al.  Fourth order phase-field model for local max-ent approximants applied to crack propagation , 2016 .

[4]  Alessandro Reali,et al.  Phase-field description of brittle fracture in plates and shells , 2016 .

[5]  Timon Rabczuk,et al.  Damage and fracture algorithm using the screened Poisson equation and local remeshing , 2016 .

[6]  B. K. Mishra,et al.  Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions , 2015 .

[7]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[8]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[9]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[10]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[11]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[12]  Charles E. Augarde,et al.  A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields , 2014 .

[13]  Fatemeh Amiri,et al.  Phase-field modeling of fracture in linear thin shells , 2014 .

[14]  T. Rabczuk,et al.  XLME interpolants, a seamless bridge between XFEM and enriched meshless methods , 2014 .

[15]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[16]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[17]  M. Arroyo,et al.  Nonlinear manifold learning for meshfree finite deformation thin‐shell analysis , 2013 .

[18]  Christian Miehe,et al.  A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns , 2013 .

[19]  Guirong Liu,et al.  An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order , 2013 .

[20]  Marino Arroyo,et al.  Second‐order convex maximum entropy approximants with applications to high‐order PDE , 2013 .

[21]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[22]  S. Wang,et al.  Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems , 2011 .

[23]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[24]  Michael A. Puso,et al.  Maximum-entropy meshfree method for incompressible media problems , 2011 .

[25]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[26]  M. Arroyo,et al.  Thin shell analysis from scattered points with maximum‐entropy approximants , 2010, International Journal for Numerical Methods in Engineering.

[27]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[28]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[29]  Marino Arroyo,et al.  On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .

[30]  Guowei Ma,et al.  THE NUMERICAL MANIFOLD METHOD: A REVIEW , 2010 .

[31]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[32]  Michael Ortiz,et al.  Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .

[33]  Michael A. Puso,et al.  Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .

[34]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[35]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[36]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[37]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[38]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[41]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[42]  René de Borst,et al.  Damage, Material Instabilities, and Failure , 2004 .

[43]  J. Liang,et al.  Time-dependent crack behavior in an integrated structure , 2004 .

[44]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[45]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[46]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[47]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[48]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[49]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[50]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[51]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[52]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[53]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[54]  R. de Borst,et al.  A Gradient-Enhanced Damage Approach to Fracture , 1996 .

[55]  Rhj Ron Peerlings,et al.  Some observations on localisation in non-local and gradient damage models , 1996 .

[56]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[57]  L. J. Sluys,et al.  Dispersive properties of gradient-dependent and rate-dependent media , 1994 .

[58]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[59]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[60]  L. Ambrosio Variational problems in SBV and image segmentation , 1989 .

[61]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[62]  Z. Bažant,et al.  Nonlocal Smeared Cracking Model for Concrete Fracture , 1988 .

[63]  Zdenek P. Bazant,et al.  Imbricate continuum and its variational derivation , 1984 .

[64]  Ta-Peng Chang,et al.  Instability of Nonlocal Continuum and Strain Averaging , 1984 .

[65]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[66]  B. Wundt,et al.  Application of the Griffith-Irwin Theory of Crack Propagation to the Bursting Behavior of Disks, Including Analytical and Experimental Studies , 1958, Journal of Fluids Engineering.

[67]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .