Research and Development for HI Intensity Mapping
暂无分享,去创建一个
David Alonso | Zeeshan Ahmed | Laura B. Newburgh | Kevin Bandura | J. Richard Shaw | Francisco Villaescusa-Navarro | Paul O'Connor | Tzu-Ching Chang | Simone Ferraro | Daniel Jacobs | Yin-Zhe Ma | Benjamin Saliwanchik | Lloyd Knox | Romeel Dav'e | Adam Beardsley | Erin Sheldon | Adrian Liu | David Rapetti | David Parkinson | Mustafa A. Amin | R'eza Ansari | Evan J. Arena | Philip Bull | Emanuele Castorina | Joshua S. Dillon | Alexander van Engelen | Aaron Ewall-Wice | Simon Foreman | Josef Frisch | Daniel Green | Gilbert Holder | Dionysios Karagiannis | Alexander A. Kaurov | Emily Kuhn | Kiyoshi W. Masui | Thomas McClintock | Kavilan Moodley | Moritz Munchmeyer | Andrei Nomerotski | Andrej Obuljen | Hamsa Padmanabhan | Olivier Perdereau | Neelima Sehgal | Chris Sheehy | Raphael Shirley | Eva Silverstein | Tracy Slatyer | Anvze Slosar | Paul Stankus | Albert Stebbins | Peter Timbie | Gregory S. Tucker | William Tyndall | Dallas Wulf | A. Slosar | G. Tucker | Z. Ahmed | E. Sheldon | D. Parkinson | A. Stebbins | J. Frisch | H. Padmanabhan | S. Foreman | A. Nomerotski | L. Knox | O. Perdereau | W. Tyndall | P. Timbie | F. Villaescusa-Navarro | A. Beardsley | J. Dillon | A. Ewall-Wice | D. Jacobs | Adrian Liu | M. Amin | D. Green | E. Silverstein | S. Ferraro | T. Slatyer | P. Stankus | E. Castorina | G. Holder | A. V. Engelen | B. Saliwanchik | C. Sheehy | Yin-Zhe Ma | K. Masui | Tzu-Ching Chang | K. Bandura | L. Newburgh | J. Shaw | D. Wulf | R. Ansari | P. Bull | K. Moodley | D. Karagiannis | M. Munchmeyer | P. O'Connor | A. Obuljen | R. Dav'e | N. Sehgal | D. Rapetti | D. Alonso | T. McClintock | R. Shirley | E. Kuhn | A. Kaurov | Dionysios Karagiannis
[1] S. Borgani,et al. An accurate tool for the fast generation of dark matter halo catalogues. , 2013, 1305.1505.
[2] Francisco-Shu Kitaura,et al. Cosmological structure formation with augmented Lagrangian perturbation theory , 2012, 1212.3514.
[3] A. Stebbins,et al. ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.
[4] Charles Lawrence,et al. Tomography of the Cosmic Dawn and Reionization Eras with Multiple Tracers , 2019, 1903.11744.
[5] Johann Bernoulli. A morphological algorithm for improving radio-frequency interference detection , 2012 .
[6] Cheng Zhao,et al. EZmocks: Extending the Zel'dovich approximation to generate mock galaxy catalogues with accurate clustering statistics , 2014, 1409.1124.
[7] Aaron R. Parsons,et al. REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY , 2016, 1602.06259.
[8] Joseph Simon,et al. Multi-Messenger Astrophysics with Pulsar Timing Arrays. , 2019, 1903.07644.
[9] Daniel C. Jacobs,et al. An external calibrator for hydrogen observatories , 2016, 2016 IEEE Conference on Antenna Measurements & Applications (CAMA).
[10] J. Richard Shaw,et al. Algorithms for FFT Beamforming Radio Interferometers , 2017, The Astrophysical Journal.
[11] Christopher Hirata,et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.
[12] H. C. Chiang,et al. HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.
[13] Matias Zaldarriaga,et al. Astro2020 Science White Paper: Synergies Between Galaxy Surveys and Reionization Measurements , 2019 .
[14] Matias Zaldarriaga,et al. Cosmology with the Highly Redshifted 21cm Line , 2019, 1903.06240.
[15] N. Oppermann,et al. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities , 2017, 1710.00424.
[16] Matias Zaldarriaga,et al. Astro2020 Science White Paper: First Stars and Black Holes at Cosmic Dawn with Redshifted 21-cm Observations , 2019 .
[17] Jason Manley,et al. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.
[18] Lia Labuschagne. Hydrogen Epoch of Reionization Array - HERA Peering back into the Epoch of Reionization : news note , 2015 .
[19] J. L. Sievers,et al. Calibration of Quasi-Redundant Interferometers , 2017, 1701.01860.
[20] S. Matarrese,et al. Primordial Non-Gaussianity , 2018, 1812.08197.
[21] University of Edinburgh,et al. Radio Time-Domain Signatures of Magnetar Birth , 2019, 1903.04691.
[22] Martin White,et al. Reconstructing baryon oscillations: A Lagrangian theory perspective , 2008, 0812.2905.
[23] Adam Lanman,et al. pyuvsim: A comprehensive simulation package for radio interferometers in python , 2019, J. Open Source Softw..
[24] Nithyanandan Thyagarajan,et al. Mitigating the effects of antenna-to-antenna variation on redundant-baseline calibration for 21 cm cosmology , 2018, Monthly Notices of the Royal Astronomical Society.
[25] A. Stebbins,et al. Simulation and Testing of a Linear Array of Modified Four-Square Feed Antennas for the Tianlai Cylindrical Radio Telescope , 2017, 1705.04435.
[26] Jonathan R. Pritchard,et al. Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.
[27] E. R. Switzer,et al. Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.
[28] A. R. Whitney,et al. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations , 2015, Publications of the Astronomical Society of Australia.
[29] Matias Zaldarriaga,et al. Precision calibration of radio interferometers using redundant baselines , 2010, 1001.5268.
[30] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[31] Matias Zaldarriaga,et al. Fast Fourier transform telescope , 2008, 0805.4414.
[32] Graeme Smecher,et al. Calibrating CHIME: a new radio interferometer to probe dark energy , 2014, Astronomical Telescopes and Instrumentation.
[33] S. Chatterjee,et al. A spherical harmonic analysis of the Ooty Wide Field Array (OWFA) visibility signal , 2018, 1804.00493.
[34] P. Mcdonald,et al. FastPM: a new scheme for fast simulations of dark matter and haloes , 2016, 1603.00476.
[35] Martin Reinecke,et al. ALGORITHM FOR THE EVALUATION OF REDUCED WIGNER MATRICES , 2010, 1002.1050.
[36] Rachel L. Webster,et al. Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data , 2013, 1304.4229.
[37] Edwin Sirko,et al. Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .
[38] F. Perini,et al. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source , 2015 .
[39] George Stein,et al. The mass-Peak Patch algorithm for fast generation of deep all-sky dark matter halo catalogues and itsN-body validation , 2018, Monthly Notices of the Royal Astronomical Society.
[40] David Alonso,et al. Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model , 2019, 1903.03689.
[41] Marco Piras,et al. Antenna Pattern Verification System Based on a Micro Unmanned Aerial Vehicle (UAV) , 2014, IEEE Antennas and Wireless Propagation Letters.
[42] Michael T. Lam,et al. The Virtues of Time and Cadence for Pulsars and Fast Transients , 2019 .
[43] Yu Feng,et al. Accurate halo–galaxy mocks from automatic bias estimation and particle mesh gravity solvers , 2017, 1701.03765.
[44] Larry R. D'Addario,et al. A low-power correlator ASIC for arrays with many antennas , 2016, 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).
[45] J. Strader,et al. Radio pulsar populations , 2010, 1008.1928.
[46] David F. Moore,et al. PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.
[47] Nithyanandan Thyagarajan,et al. An efficient feedback calibration algorithm for direct imaging radio telescopes , 2016, 1603.02126.
[48] Cathryn M. Trott,et al. Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.
[49] Cathryn M. Trott,et al. Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.
[50] Matias Zaldarriaga,et al. Astro2020 Science White Paper: Insights Into the Epoch of Reionization with the Highly-Redshifted 21-cm Line , 2019 .
[51] Gregory S. Tucker,et al. Progress in the construction and testing of the Tianlai radio interferometers , 2018, Astronomical Telescopes + Instrumentation.
[52] Bruno Maffei,et al. Update on the BINGO 21cm intensity mapping experiment , 2016, 1610.06826.
[53] Cora Dvorkin,et al. Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations , 2019 .
[54] B. Pindor,et al. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array , 2017, Publications of the Astronomical Society of Australia.
[55] Max Tegmark,et al. How well can we measure and understand foregrounds with 21-cm experiments? , 2011, 1106.0007.
[56] Ue-Li Pen,et al. Cosmic tidal reconstruction , 2015, 1511.04680.
[57] T. Joseph W. Lazio,et al. Fast Radio Burst Tomography of the Unseen Universe , 2019, 1903.06535.
[58] David R. DeBoer,et al. Erratum: “PAPER-64 Constraints on Reionization: The 21 cm Power Spectrum at z = 8.4” (2015, ApJ, 809, 61) , 2018, The Astrophysical Journal.
[59] James E. Aguirre,et al. Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure , 2017, 1712.07212.
[60] J. Hewitt,et al. Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array , 2018, The Astrophysical Journal.
[61] M. A. McLaughlin,et al. Gravitational Waves, Extreme Astrophysics, and Fundamental Physics with Precision Pulsar Timing , 2019, 1903.08653.
[62] Matias Zaldarriaga,et al. Fundamental Cosmology in the Dark Ages with 21-cm Line Fluctuations Furlanetto , 2019 .
[63] Rachel Mandelbaum,et al. Dark Energy and Modified Gravity , 2019, 1903.12016.
[64] Matias Zaldarriaga,et al. Mapping Cosmic Dawn and Reionization: Challenges and Synergies , 2019 .
[65] A. Amara,et al. Beam Calibration of Radio Telescopes with Drones , 2015, 1505.05885.
[66] David R. DeBoer,et al. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS , 2016, 1602.03887.
[67] David N. Spergel,et al. Ingredients for 21 cm Intensity Mapping , 2018, The Astrophysical Journal.
[68] Alexander van Engelen,et al. Lensing reconstruction from line intensity maps: the impact of gravitational nonlinearity , 2018, Journal of Cosmology and Astroparticle Physics.
[69] Joseph Simon,et al. Physics Beyond the Standard Model With Pulsar Timing Arrays , 2019, 1907.04960.
[70] Graeme Smecher,et al. Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.
[71] David R. DeBoer,et al. Characterizing Signal Loss in the 21 cm Reionization Power Spectrum: A Revised Study of PAPER-64 , 2018, The Astrophysical Journal.
[72] Matias Zaldarriaga,et al. Cosmic Dawn and Reionization: Astrophysics in the Final Frontier , 2019, 1903.03629.
[73] Jonathan C. Pober,et al. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line , 2014, 1411.2050.
[74] Matias Zaldarriaga,et al. Omniscopes: Large area telescope arrays with only NlogN computational cost , 2009, 0909.0001.
[75] Charles M. Bradford,et al. Astrophysics and Cosmology with Line-Intensity Mapping , 2019, 1903.04496.
[76] Christopher M. Hirata,et al. The foreground wedge and 21-cm BAO surveys , 2015, 1508.06503.
[77] M. Halpern,et al. Observations of fast radio bursts at frequencies down to 400 megahertz , 2019, Nature.
[78] C. Magneville,et al. Sky reconstruction from transit visibilities: PAON-4 and Tianlai Dish Array , 2016, 1606.03090.
[79] Visweshwar Ram Marthi,et al. Non-linear Redundancy Calibration , 2013, 1310.1449.
[80] Kevin Bandura,et al. An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.
[81] A. Beardsley,et al. A real-time, all-sky, high time resolution, direct imager for the long wavelength array , 2019, Monthly Notices of the Royal Astronomical Society.
[82] Danny C. Price,et al. The Radio Sky at Meter Wavelengths: m-mode Analysis Imaging with the OVRO-LWA , 2017, The Astronomical Journal.
[83] Ue-Li Pen,et al. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis , 2014, 1401.2095.
[84] C. Dickinson,et al. Potential impact of global navigation satellite services on total power H i intensity mapping surveys , 2018, Monthly Notices of the Royal Astronomical Society.
[85] Joseph Simon,et al. Supermassive Black-hole Demographics & Environments With Pulsar Timing Arrays , 2019, 1903.08183.
[86] Bradley Greig,et al. Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC , 2017, Proceedings of the International Astronomical Union.
[87] Martin White,et al. Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.
[88] Ue-Li Pen. Gravitational lensing of epoch-of-reionization gas , 2004 .
[89] S. J. Tingay,et al. In situ measurement of MWA primary beam variation using ORBCOMM , 2018, Publications of the Astronomical Society of Australia.
[90] Casey Papovich,et al. Astro2020 Science White Paper: A proposal to exploit galaxy-21cm synergies to shed light on the Epoch of Reionization , 2019 .
[91] David DeBoer,et al. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS , 2016, 1602.06277.
[92] S. J. Tingay,et al. A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis , 2017, Publications of the Astronomical Society of Australia.
[93] B. Pindor,et al. Characterization of the ionosphere above the Murchison Radio Observatory using the Murchison Widefield Array , 2017, 1707.04978.
[94] Ruby Byrne,et al. Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA , 2018, The Astrophysical Journal.
[95] Alan E. E. Rogers,et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.
[96] Evan J. Arena,et al. Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients , 2019, 1907.12559.
[97] J. M. Martin,et al. 21 cm observation of large-scale structures at z ~ 1 - Instrument sensitivity and foreground subtraction , 2011, 1108.1474.
[98] Matias Zaldarriaga,et al. Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.
[99] Jinsong Ping,et al. Radio Astronomy on and Around the Moon , 2018 .
[100] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[101] Chris Power,et al. halogen: a tool for fast generation of mock halo catalogues , 2014, 1412.5228.
[102] E. R. Switzer,et al. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.
[103] Danny C. Price,et al. Implementation of a direct-imaging and FX correlator for the BEST-2 array , 2014 .
[104] Evan J. Arena,et al. Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.
[105] C. H. Anderson,et al. Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background , 2002, astro-ph/0209560.
[106] Meiling Deng,et al. The cloverleaf antenna: A compact wide-bandwidth dual-polarization feed for CHIME , 2014, 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM).
[107] David Alonso,et al. Fast simulations for intensity mapping experiments , 2014, 1405.1751.
[108] S. J. Tingay,et al. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients , 2016, Publications of the Astronomical Society of Australia.
[109] Paul B. Demorest,et al. Fundamental Physics with Radio Millisecond Pulsars , 2019, 1903.08194.