Research and Development for HI Intensity Mapping

Development of the hardware, data analysis, and simulation techniques for large compact radio arrays dedicated to mapping the 21 cm line of neutral hydrogen gas has proven to be more difficult than imagined twenty years ago when such telescopes were first proposed. Despite tremendous technical and methodological advances, there are several outstanding questions on how to optimally calibrate and analyze such data. On the positive side, it has become clear that the outstanding issues are purely technical in nature and can be solved with sufficient development activity. Such activity will enable science across redshifts, from early galaxy evolution in the pre-reionization era to dark energy evolution at low redshift.

David Alonso | Zeeshan Ahmed | Laura B. Newburgh | Kevin Bandura | J. Richard Shaw | Francisco Villaescusa-Navarro | Paul O'Connor | Tzu-Ching Chang | Simone Ferraro | Daniel Jacobs | Yin-Zhe Ma | Benjamin Saliwanchik | Lloyd Knox | Romeel Dav'e | Adam Beardsley | Erin Sheldon | Adrian Liu | David Rapetti | David Parkinson | Mustafa A. Amin | R'eza Ansari | Evan J. Arena | Philip Bull | Emanuele Castorina | Joshua S. Dillon | Alexander van Engelen | Aaron Ewall-Wice | Simon Foreman | Josef Frisch | Daniel Green | Gilbert Holder | Dionysios Karagiannis | Alexander A. Kaurov | Emily Kuhn | Kiyoshi W. Masui | Thomas McClintock | Kavilan Moodley | Moritz Munchmeyer | Andrei Nomerotski | Andrej Obuljen | Hamsa Padmanabhan | Olivier Perdereau | Neelima Sehgal | Chris Sheehy | Raphael Shirley | Eva Silverstein | Tracy Slatyer | Anvze Slosar | Paul Stankus | Albert Stebbins | Peter Timbie | Gregory S. Tucker | William Tyndall | Dallas Wulf | A. Slosar | G. Tucker | Z. Ahmed | E. Sheldon | D. Parkinson | A. Stebbins | J. Frisch | H. Padmanabhan | S. Foreman | A. Nomerotski | L. Knox | O. Perdereau | W. Tyndall | P. Timbie | F. Villaescusa-Navarro | A. Beardsley | J. Dillon | A. Ewall-Wice | D. Jacobs | Adrian Liu | M. Amin | D. Green | E. Silverstein | S. Ferraro | T. Slatyer | P. Stankus | E. Castorina | G. Holder | A. V. Engelen | B. Saliwanchik | C. Sheehy | Yin-Zhe Ma | K. Masui | Tzu-Ching Chang | K. Bandura | L. Newburgh | J. Shaw | D. Wulf | R. Ansari | P. Bull | K. Moodley | D. Karagiannis | M. Munchmeyer | P. O'Connor | A. Obuljen | R. Dav'e | N. Sehgal | D. Rapetti | D. Alonso | T. McClintock | R. Shirley | E. Kuhn | A. Kaurov | Dionysios Karagiannis

[1]  S. Borgani,et al.  An accurate tool for the fast generation of dark matter halo catalogues. , 2013, 1305.1505.

[2]  Francisco-Shu Kitaura,et al.  Cosmological structure formation with augmented Lagrangian perturbation theory , 2012, 1212.3514.

[3]  A. Stebbins,et al.  ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.

[4]  Charles Lawrence,et al.  Tomography of the Cosmic Dawn and Reionization Eras with Multiple Tracers , 2019, 1903.11744.

[5]  Johann Bernoulli A morphological algorithm for improving radio-frequency interference detection , 2012 .

[6]  Cheng Zhao,et al.  EZmocks: Extending the Zel'dovich approximation to generate mock galaxy catalogues with accurate clustering statistics , 2014, 1409.1124.

[7]  Aaron R. Parsons,et al.  REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY , 2016, 1602.06259.

[8]  Joseph Simon,et al.  Multi-Messenger Astrophysics with Pulsar Timing Arrays. , 2019, 1903.07644.

[9]  Daniel C. Jacobs,et al.  An external calibrator for hydrogen observatories , 2016, 2016 IEEE Conference on Antenna Measurements & Applications (CAMA).

[10]  J. Richard Shaw,et al.  Algorithms for FFT Beamforming Radio Interferometers , 2017, The Astrophysical Journal.

[11]  Christopher Hirata,et al.  A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.

[12]  H. C. Chiang,et al.  HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.

[13]  Matias Zaldarriaga,et al.  Astro2020 Science White Paper: Synergies Between Galaxy Surveys and Reionization Measurements , 2019 .

[14]  Matias Zaldarriaga,et al.  Cosmology with the Highly Redshifted 21cm Line , 2019, 1903.06240.

[15]  N. Oppermann,et al.  Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities , 2017, 1710.00424.

[16]  Matias Zaldarriaga,et al.  Astro2020 Science White Paper: First Stars and Black Holes at Cosmic Dawn with Redshifted 21-cm Observations , 2019 .

[17]  Jason Manley,et al.  OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.

[18]  Lia Labuschagne Hydrogen Epoch of Reionization Array - HERA Peering back into the Epoch of Reionization : news note , 2015 .

[19]  J. L. Sievers,et al.  Calibration of Quasi-Redundant Interferometers , 2017, 1701.01860.

[20]  S. Matarrese,et al.  Primordial Non-Gaussianity , 2018, 1812.08197.

[21]  University of Edinburgh,et al.  Radio Time-Domain Signatures of Magnetar Birth , 2019, 1903.04691.

[22]  Martin White,et al.  Reconstructing baryon oscillations: A Lagrangian theory perspective , 2008, 0812.2905.

[23]  Adam Lanman,et al.  pyuvsim: A comprehensive simulation package for radio interferometers in python , 2019, J. Open Source Softw..

[24]  Nithyanandan Thyagarajan,et al.  Mitigating the effects of antenna-to-antenna variation on redundant-baseline calibration for 21 cm cosmology , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  A. Stebbins,et al.  Simulation and Testing of a Linear Array of Modified Four-Square Feed Antennas for the Tianlai Cylindrical Radio Telescope , 2017, 1705.04435.

[26]  Jonathan R. Pritchard,et al.  Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.

[27]  E. R. Switzer,et al.  Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.

[28]  A. R. Whitney,et al.  Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations , 2015, Publications of the Astronomical Society of Australia.

[29]  Matias Zaldarriaga,et al.  Precision calibration of radio interferometers using redundant baselines , 2010, 1001.5268.

[30]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[31]  Matias Zaldarriaga,et al.  Fast Fourier transform telescope , 2008, 0805.4414.

[32]  Graeme Smecher,et al.  Calibrating CHIME: a new radio interferometer to probe dark energy , 2014, Astronomical Telescopes and Instrumentation.

[33]  S. Chatterjee,et al.  A spherical harmonic analysis of the Ooty Wide Field Array (OWFA) visibility signal , 2018, 1804.00493.

[34]  P. Mcdonald,et al.  FastPM: a new scheme for fast simulations of dark matter and haloes , 2016, 1603.00476.

[35]  Martin Reinecke,et al.  ALGORITHM FOR THE EVALUATION OF REDUCED WIGNER MATRICES , 2010, 1002.1050.

[36]  Rachel L. Webster,et al.  Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data , 2013, 1304.4229.

[37]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[38]  F. Perini,et al.  Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source , 2015 .

[39]  George Stein,et al.  The mass-Peak Patch algorithm for fast generation of deep all-sky dark matter halo catalogues and itsN-body validation , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  David Alonso,et al.  Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model , 2019, 1903.03689.

[41]  Marco Piras,et al.  Antenna Pattern Verification System Based on a Micro Unmanned Aerial Vehicle (UAV) , 2014, IEEE Antennas and Wireless Propagation Letters.

[42]  Michael T. Lam,et al.  The Virtues of Time and Cadence for Pulsars and Fast Transients , 2019 .

[43]  Yu Feng,et al.  Accurate halo–galaxy mocks from automatic bias estimation and particle mesh gravity solvers , 2017, 1701.03765.

[44]  Larry R. D'Addario,et al.  A low-power correlator ASIC for arrays with many antennas , 2016, 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[45]  J. Strader,et al.  Radio pulsar populations , 2010, 1008.1928.

[46]  David F. Moore,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.

[47]  Nithyanandan Thyagarajan,et al.  An efficient feedback calibration algorithm for direct imaging radio telescopes , 2016, 1603.02126.

[48]  Cathryn M. Trott,et al.  Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.

[49]  Cathryn M. Trott,et al.  Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.

[50]  Matias Zaldarriaga,et al.  Astro2020 Science White Paper: Insights Into the Epoch of Reionization with the Highly-Redshifted 21-cm Line , 2019 .

[51]  Gregory S. Tucker,et al.  Progress in the construction and testing of the Tianlai radio interferometers , 2018, Astronomical Telescopes + Instrumentation.

[52]  Bruno Maffei,et al.  Update on the BINGO 21cm intensity mapping experiment , 2016, 1610.06826.

[53]  Cora Dvorkin,et al.  Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations , 2019 .

[54]  B. Pindor,et al.  Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array , 2017, Publications of the Astronomical Society of Australia.

[55]  Max Tegmark,et al.  How well can we measure and understand foregrounds with 21-cm experiments? , 2011, 1106.0007.

[56]  Ue-Li Pen,et al.  Cosmic tidal reconstruction , 2015, 1511.04680.

[57]  T. Joseph W. Lazio,et al.  Fast Radio Burst Tomography of the Unseen Universe , 2019, 1903.06535.

[58]  David R. DeBoer,et al.  Erratum: “PAPER-64 Constraints on Reionization: The 21 cm Power Spectrum at z = 8.4” (2015, ApJ, 809, 61) , 2018, The Astrophysical Journal.

[59]  James E. Aguirre,et al.  Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure , 2017, 1712.07212.

[60]  J. Hewitt,et al.  Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array , 2018, The Astrophysical Journal.

[61]  M. A. McLaughlin,et al.  Gravitational Waves, Extreme Astrophysics, and Fundamental Physics with Precision Pulsar Timing , 2019, 1903.08653.

[62]  Matias Zaldarriaga,et al.  Fundamental Cosmology in the Dark Ages with 21-cm Line Fluctuations Furlanetto , 2019 .

[63]  Rachel Mandelbaum,et al.  Dark Energy and Modified Gravity , 2019, 1903.12016.

[64]  Matias Zaldarriaga,et al.  Mapping Cosmic Dawn and Reionization: Challenges and Synergies , 2019 .

[65]  A. Amara,et al.  Beam Calibration of Radio Telescopes with Drones , 2015, 1505.05885.

[66]  David R. DeBoer,et al.  THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS , 2016, 1602.03887.

[67]  David N. Spergel,et al.  Ingredients for 21 cm Intensity Mapping , 2018, The Astrophysical Journal.

[68]  Alexander van Engelen,et al.  Lensing reconstruction from line intensity maps: the impact of gravitational nonlinearity , 2018, Journal of Cosmology and Astroparticle Physics.

[69]  Joseph Simon,et al.  Physics Beyond the Standard Model With Pulsar Timing Arrays , 2019, 1907.04960.

[70]  Graeme Smecher,et al.  Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.

[71]  David R. DeBoer,et al.  Characterizing Signal Loss in the 21 cm Reionization Power Spectrum: A Revised Study of PAPER-64 , 2018, The Astrophysical Journal.

[72]  Matias Zaldarriaga,et al.  Cosmic Dawn and Reionization: Astrophysics in the Final Frontier , 2019, 1903.03629.

[73]  Jonathan C. Pober,et al.  The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line , 2014, 1411.2050.

[74]  Matias Zaldarriaga,et al.  Omniscopes: Large area telescope arrays with only NlogN computational cost , 2009, 0909.0001.

[75]  Charles M. Bradford,et al.  Astrophysics and Cosmology with Line-Intensity Mapping , 2019, 1903.04496.

[76]  Christopher M. Hirata,et al.  The foreground wedge and 21-cm BAO surveys , 2015, 1508.06503.

[77]  M. Halpern,et al.  Observations of fast radio bursts at frequencies down to 400 megahertz , 2019, Nature.

[78]  C. Magneville,et al.  Sky reconstruction from transit visibilities: PAON-4 and Tianlai Dish Array , 2016, 1606.03090.

[79]  Visweshwar Ram Marthi,et al.  Non-linear Redundancy Calibration , 2013, 1310.1449.

[80]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[81]  A. Beardsley,et al.  A real-time, all-sky, high time resolution, direct imager for the long wavelength array , 2019, Monthly Notices of the Royal Astronomical Society.

[82]  Danny C. Price,et al.  The Radio Sky at Meter Wavelengths: m-mode Analysis Imaging with the OVRO-LWA , 2017, The Astronomical Journal.

[83]  Ue-Li Pen,et al.  Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis , 2014, 1401.2095.

[84]  C. Dickinson,et al.  Potential impact of global navigation satellite services on total power H i intensity mapping surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[85]  Joseph Simon,et al.  Supermassive Black-hole Demographics & Environments With Pulsar Timing Arrays , 2019, 1903.08183.

[86]  Bradley Greig,et al.  Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC , 2017, Proceedings of the International Astronomical Union.

[87]  Martin White,et al.  Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.

[88]  Ue-Li Pen Gravitational lensing of epoch-of-reionization gas , 2004 .

[89]  S. J. Tingay,et al.  In situ measurement of MWA primary beam variation using ORBCOMM , 2018, Publications of the Astronomical Society of Australia.

[90]  Casey Papovich,et al.  Astro2020 Science White Paper: A proposal to exploit galaxy-21cm synergies to shed light on the Epoch of Reionization , 2019 .

[91]  David DeBoer,et al.  THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS , 2016, 1602.06277.

[92]  S. J. Tingay,et al.  A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis , 2017, Publications of the Astronomical Society of Australia.

[93]  B. Pindor,et al.  Characterization of the ionosphere above the Murchison Radio Observatory using the Murchison Widefield Array , 2017, 1707.04978.

[94]  Ruby Byrne,et al.  Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA , 2018, The Astrophysical Journal.

[95]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[96]  Evan J. Arena,et al.  Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients , 2019, 1907.12559.

[97]  J. M. Martin,et al.  21 cm observation of large-scale structures at z ~ 1 - Instrument sensitivity and foreground subtraction , 2011, 1108.1474.

[98]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[99]  Jinsong Ping,et al.  Radio Astronomy on and Around the Moon , 2018 .

[100]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[101]  Chris Power,et al.  halogen: a tool for fast generation of mock halo catalogues , 2014, 1412.5228.

[102]  E. R. Switzer,et al.  MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.

[103]  Danny C. Price,et al.  Implementation of a direct-imaging and FX correlator for the BEST-2 array , 2014 .

[104]  Evan J. Arena,et al.  Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.

[105]  C. H. Anderson,et al.  Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background , 2002, astro-ph/0209560.

[106]  Meiling Deng,et al.  The cloverleaf antenna: A compact wide-bandwidth dual-polarization feed for CHIME , 2014, 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM).

[107]  David Alonso,et al.  Fast simulations for intensity mapping experiments , 2014, 1405.1751.

[108]  S. J. Tingay,et al.  Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients , 2016, Publications of the Astronomical Society of Australia.

[109]  Paul B. Demorest,et al.  Fundamental Physics with Radio Millisecond Pulsars , 2019, 1903.08194.