Dual Control of Linearly Parameterised Models via Prediction of Posterior Densities

A suboptimal dual control policy is presented for linearly parameterised systems with unknown parameters, additive Gaussian noise and quadratic cost. The dual effect of the control action is taken into account through the prediction of the future posterior densities of the model parameters θ. If θ has a normal prior density, the model response is linear in θ and contains no autoregressive part, then the posterior densities of θ are normal and their covariance matrices are known functions of the control actions. Replacing the unknown future posterior means by the current parameter estimates, one can easily approximate the costto- go. Two examples of FIR models illustrate the superiority ofthis dual control policy over two classical passive policies, namely heuristic certainty equivalence control and open-loop-feedback-optimal control.

[1]  E. Walter,et al.  An actively adaptive control policy for linear models , 1996, IEEE Trans. Autom. Control..

[2]  C Kulcsár,et al.  Optimal experimental design and therapeutic drug monitoring. , 1994, International journal of bio-medical computing.

[3]  Björn Wittenmark,et al.  An Adaptive Control Algorithm with Dual Features , 1985 .

[4]  Karl Johan Åström,et al.  Dual Control of a Low Order System , 1982 .

[5]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[6]  S. Dreyfus Dynamic Programming and the Calculus of Variations , 1960 .

[7]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[8]  D. S. Bayard,et al.  New Synthesis Techniques for Finite Time Stochastic Adaptive Controllers , 1983 .

[9]  Caroline Kulcsár Planification d'experiences et commande duale , 1995 .

[10]  Yaakov Bar-Shalom,et al.  An actively adaptive control for linear systems with random parameters via the dual control approach , 1972, CDC 1972.

[11]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[12]  B. Bernhardsson Dual Control of a First-Order System with Two Possible Gains , 1989 .

[13]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[14]  R. Bellman Dynamic programming. , 1957, Science.

[15]  Y. Bar-Shalom,et al.  A multiple model adaptive dual control algorithm for stochastic systems with unknown parameters , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[16]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[17]  Eric Walter,et al.  Experimental Design for the Control of Linear State-Space Systems , 1996 .

[18]  E. Tse,et al.  Further comments on "Adaptive stochastic control for a class of linear systems" , 1972 .

[19]  Y. Bar-Shalom,et al.  Wide-sense adaptive dual control for nonlinear stochastic systems , 1973 .