Kinetic evidence of reaction diffusion during the polymerization of multi(meth)acrylate monomers

The polymerization behavior and reaction kinetics for a series of multifunctional (meth)acrylate monomers were experimentally characterized and modeled with particular attention focused on the importance of the reaction diffusion mechanism in these polymerizations. In general, reaction diffusion was found to be the primary mechanism for termination beginning as low as 5% double-bond conversion. Termination mechanisms in linear systems have been found to become reaction diffusion controlled, but not until much higher conversions, 40-50%. Evidence of reaction diffusion included a significant plateau in the termination kinetic constant and strict proportionality of k p and k t , at higher conversion (>10%) for all monomers studied