Robust behavioral modeling of dynamic nonlinearities using Gegenbauer polynomials with application to RF power amplifiers

In this article, we propose a new set of basis functions based on Gegenbauer polynomials suitable for robust behavioral modeling of nonlinear dynamic systems. These polynomials can be optimized for maximum model identification stability under different input signal distributions. The efficiency and robustness of the proposed polynomial models are demonstrated and compared to the ones of previously published models. The obtained results revealed an exceptional numerical stability regardless of the input signal statistics, making the proposed new models suitable for multimode and broadband nonlinear wireless transmitters. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:268-279, 2014.

[1]  Dennis R. Morgan,et al.  A robust digital baseband predistorter constructed using memory polynomials , 2004, IEEE Transactions on Communications.

[2]  Fadhel M. Ghannouchi,et al.  Experimental approach for robust identification of radiofrequency power amplifier behavioural models using polynomial structures , 2010 .

[3]  J.S. Kenney,et al.  Spline-Based Model for Digital Predistortion of Wide-Band Signals for High Power Amplifier Linearization , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[4]  Richard Saucier,et al.  Computer Generation of Statistical Distributions , 2000 .

[5]  D. Rudolph Out-of-band emissions of digital transmissions using Kahn EER technique , 2002 .

[6]  J. S. Kenney,et al.  Quantifying memory effects in RF power amplifiers , 2002 .

[7]  Raviv Raich,et al.  Orthogonal polynomials for complex Gaussian processes , 2004, IEEE Transactions on Signal Processing.

[8]  T.J. Brazil,et al.  An efficient Volterra-based behavioral model for wideband RF power amplifiers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[9]  Jungsang Kim,et al.  Digital predistortion of wideband signals based on power amplifier model with memory , 2001 .

[10]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[11]  James Stuart Tanton,et al.  Encyclopedia of Mathematics , 2005 .

[12]  M. J. Madero-Ayora,et al.  Volterra Behavioral Model for Wideband RF Amplifiers , 2007, IEEE Transactions on Microwave Theory and Techniques.

[13]  F. Grund Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  Raviv Raich,et al.  Orthogonal polynomials for power amplifier modeling and predistorter design , 2004, IEEE Transactions on Vehicular Technology.

[16]  Fadhel M. Ghannouchi,et al.  An Accurate Complexity-Reduced “PLUME” Model for Behavioral Modeling and Digital Predistortion of RF Power Amplifiers , 2011, IEEE Transactions on Industrial Electronics.

[17]  T.J. Brazil,et al.  Behavioral modeling of RF power amplifiers based on pruned volterra series , 2004, IEEE Microwave and Wireless Components Letters.

[18]  J. S. Kenney,et al.  Behavioral modeling of nonlinear RF power amplifiers considering memory effects , 2003 .