A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer.

A new mixed lanthanide metal-organic framework thermometer Tb0.9Eu0.1PIA with the significantly high sensitivity of 3.53% per K has been realized by making use of an organic ligand, 5-(pyridin-4-yl)isophthalate, with higher triplet state energy.

[1]  Takayuki Nakanishi,et al.  Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. , 2013, Angewandte Chemie.

[2]  Peter Gölitz,et al.  Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .

[3]  Hans H. Gorris,et al.  Photon upconverting nanoparticles for luminescent sensing of temperature. , 2012, Nanoscale.

[4]  R. Paolesse,et al.  Temperature-dependent fluorescence of Cu5 metal clusters: a molecular thermometer. , 2012, Angewandte Chemie.

[5]  R. O. Freire,et al.  Tb3+→Eu3+ Energy Transfer in Mixed-Lanthanide-Organic Frameworks , 2012 .

[6]  D. Jaque,et al.  High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. , 2012, Small.

[7]  P. Falcaro,et al.  Doping light emitters into metal-organic frameworks. , 2012, Angewandte Chemie.

[8]  S. Natarajan,et al.  Highly luminescent and thermally stable lanthanide coordination polymers designed from 4-(dipyridin-2-yl)aminobenzoate: efficient energy transfer from Tb3+ to Eu3+ in a mixed lanthanide coordination compound. , 2012, Inorganic chemistry.

[9]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[10]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical reviews.

[11]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[12]  M. Dincǎ,et al.  Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. , 2011, Journal of the American Chemical Society.

[13]  A. J. Blake,et al.  Increasing nuclearity of secondary building units in porous cobalt(II) metal-organic frameworks: variation in structure and H2 adsorption. , 2011, Dalton transactions.

[14]  M. Allendorf,et al.  Charge-transfer guest interactions in luminescent MOFs: implications for solid-state temperature and environmental sensing. , 2011, Dalton transactions.

[15]  Jie‐Peng Zhang,et al.  A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide , 2011 .

[16]  Shuangqing Wang,et al.  A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. , 2011, Angewandte Chemie.

[17]  L. Carlos,et al.  Lanthanide-based luminescent molecular thermometers , 2011 .

[18]  D. Chiu,et al.  Ratiometric temperature sensing with semiconducting polymer dots. , 2011, Journal of the American Chemical Society.

[19]  V. de Zea Bermudez,et al.  Progress on lanthanide-based organic-inorganic hybrid phosphors. , 2011, Chemical Society reviews.

[20]  Chao-Tsen Chen,et al.  A PNIPAM-based fluorescent nanothermometer with ratiometric readout. , 2011, Chemical communications.

[21]  S. Petoud,et al.  Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. , 2011, Journal of the American Chemical Society.

[22]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[23]  Luís D Carlos,et al.  A Luminescent Molecular Thermometer for Long‐Term Absolute Temperature Measurements at the Nanoscale , 2010, Advanced materials.

[24]  Perry G. Schiro,et al.  Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. , 2010, Journal of the American Chemical Society.

[25]  O. Wolfbeis,et al.  Ratiometric fluorescent nanoparticles for sensing temperature , 2010 .

[26]  O. Wolfbeis,et al.  Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium (III) Complex Probe , 2010 .

[27]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[28]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[29]  Kyriakos C. Stylianou,et al.  A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. , 2010, Journal of the American Chemical Society.

[30]  Otto S. Wolfbeis,et al.  Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range , 2010, Advanced materials.

[31]  Nathaniel L Rosi,et al.  Near-infrared luminescent lanthanide MOF barcodes. , 2009, Journal of the American Chemical Society.

[32]  A. Wood,et al.  Application of a temperature‐dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation‐induced temperature changes in biological samples , 2009, Bioelectromagnetics.

[33]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[34]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[35]  Changfeng Wu,et al.  Multicolor conjugated polymer dots for biological fluorescence imaging. , 2008, ACS nano.

[36]  A. Corma,et al.  Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. , 2008, Angewandte Chemie.

[37]  Wenbin Lin,et al.  Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. , 2007, Journal of the American Chemical Society.

[38]  G. Shimizu,et al.  Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. , 2006, Journal of the American Chemical Society.

[39]  A. P. Silva,et al.  Luminescent molecular thermometers , 2006 .

[40]  Jaebeom Lee,et al.  Nanoparticle assemblies with molecular springs: a nanoscale thermometer. , 2005, Angewandte Chemie.

[41]  Hiroshi Yokoyama,et al.  Temperature-sensitive photoluminescence of CdSe quantum dot clusters. , 2005, The journal of physical chemistry. B.

[42]  A. Døssing Luminescence from Lanthanide(3+) Ions in Solution , 2005 .

[43]  Zhiyu Wang,et al.  Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass , 2005 .

[44]  Luís D. Carlos,et al.  Fine‐Tuning of the Chromaticity of the Emission Color of Organic–Inorganic Hybrids Co‐Doped with EuIII, TbIII, and TmIII , 2002 .

[45]  David Parker,et al.  Luminescent lanthanide sensors for pH, pO2 and selected anions , 2000 .

[46]  Veli-Matti Mukkala,et al.  Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield , 1997 .

[47]  Marian Elbanowski,et al.  The lanthanides as luminescent probes in investigations of biochemical systems , 1996 .

[48]  M. L. Bhaumik Quenching and Temperature Dependence of Fluorescence in Rare‐Earth Chelates , 1964 .

[49]  S. Weissman,et al.  Intramolecular Energy Transfer The Fluorescence of Complexes of Europium , 1942 .

[50]  Sanping Chen,et al.  Lanthanide coordination compounds with 1H-benzimidazole-2-carboxylic acid: syntheses, structures and spectroscopic properties , 2013 .

[51]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[52]  Gregory D. Phelan,et al.  Europium beta-diketonate temperature sensors: Effects of ligands, matrix, and concentration , 2004 .

[53]  A. Beeby,et al.  Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states , 1999 .

[54]  J. Tyson,et al.  Remote thermal imaging with 0.7‐μm spatial resolution using temperature‐dependent fluorescent thin flims , 1983 .