Non-uniform spline recovery from small degree polynomial approximation
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[2] M. Kreĭn,et al. The Markov Moment Problem and Extremal Problems , 1977 .
[3] D. Donoho. Superresolution via sparsity constraints , 1992 .
[4] Tamás Erdélyi,et al. CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES FOR RATIONAL SPACES , 1994 .
[5] S. Osher,et al. Convergence rates of convex variational regularization , 2004 .
[6] Christopher K. Wikle,et al. Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.
[7] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[8] Jean-Marc Azais Mario Wschebor. A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail , 2006, math/0607041.
[9] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[10] Yohann de Castro,et al. Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.
[11] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[12] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[13] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[14] Carlos Fernandez-Granda. Support detection in super-resolution , 2013, ArXiv.
[15] Gongguo Tang,et al. Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).
[16] F. Gamboa,et al. Spike detection from inaccurate samplings , 2013, 1301.5873.
[17] Shai Dekel,et al. Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials , 2014, J. Approx. Theory.
[18] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.