Non-uniform spline recovery from small degree polynomial approximation

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[2]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[3]  D. Donoho Superresolution via sparsity constraints , 1992 .

[4]  Tamás Erdélyi,et al.  CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES FOR RATIONAL SPACES , 1994 .

[5]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[6]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[7]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[8]  Jean-Marc Azais Mario Wschebor A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail , 2006, math/0607041.

[9]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[10]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[11]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[12]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[13]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[14]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[15]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[16]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[17]  Shai Dekel,et al.  Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials , 2014, J. Approx. Theory.

[18]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.