Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction

The Hartree-Fock (HF) equations for the (He)2 system are solved using a suitable exchange perturbation technique. The HF interaction energy is then obtained directly from a rapidly convergent iteration procedure. The method remains convergent for short interatomic distances, where the interaction energy surpasses the energy of intraatomic excitations. The fast convergence of the method is a result of the proper treatment of the exchange-deformation effects. In the region of the van der Waals minimum, these effects account for 50% of the HF deformation energy.

[1]  H. Chojnacki,et al.  Approximate exchange perturbation study of intermolecular interactions in molecular complexes , 1978 .

[2]  J. Paldus Coupled Cluster Approaches to Many-Electron Correlation Problem , 1983 .

[3]  W. Adams,et al.  Is antisymmetrization necessary , 1979 .

[4]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[5]  J. Hirschfelder,et al.  New Partitioning Perturbation Theory. III. Applications to Electron Exchange , 1970 .

[6]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[7]  L. Piela,et al.  Importance of exchange effects in the deformation of interacting ions , 1983 .

[8]  G. Chałasiński Exchange-perturbation calculations of the interaction energy between Be atoms including intra-atomic correlation effects☆ , 1983 .

[9]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[10]  P. Kollman,et al.  An SCF partitioning scheme for the hydrogen bond , 1970 .

[11]  J. Ladik,et al.  Investigation of the interaction between molecules at medium distances: I. SCF LCAO MO supermolecule, perturbational and mutually consistent calculations for two interacting HF and CH2O molecules , 1975 .

[12]  B. Jeziorski,et al.  On the exchange polarization effects in the interaction of two helium atoms , 1976 .

[13]  M. Gutowski,et al.  Effective basis sets for calculations of exchange‐repulsion energy , 1984 .

[14]  P. Claverie,et al.  Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison withab initio SCF computations , 1984 .

[15]  D. Chipman Localization in exchange perturbation theory , 1977 .

[16]  Michael W. Schmidt,et al.  Effective convergence to complete orbital bases and to the atomic Hartree–Fock limit through systematic sequences of Gaussian primitives , 1979 .

[17]  W. N. Whitton The analytic continuation of a group of eigenvalues , 1978 .

[18]  D. Klein Degenerate perturbation theory , 1974 .

[19]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[20]  J. Gázquez,et al.  Piecewise polynomial electronic wavefunctions , 1977 .

[21]  A. J. Sadlej Long range induction and dispersion interactions between Hartree-Fock subsystems , 1980 .

[22]  M. Jaszuński Coupled Hartree-Fock calculation of the induction energy , 1980 .

[23]  G. Chałasiński Perturbation calculations of the interaction energy between closed-shell Hartree-Fock atoms , 1983 .

[24]  L. Piela,et al.  Does the boys and bernardi function counterpoise method actually overcorrect the basis set superposition error , 1986 .

[25]  W. Adams,et al.  Exchange perturbation theory. IV. Calculations on H2 , 1980 .

[26]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[27]  W. Adams,et al.  Exchange perturbation theory. II. Eisenschitz-London type , 1978 .

[28]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[29]  W. Adams,et al.  On the solution of the schrödinger equation in terms of wavefunctions least distorted from products of atomic wavefunctions , 1971 .

[30]  W. Adams,et al.  Orbital Theories of Electronic Structure , 1962 .

[31]  B. Jeziorski,et al.  Exchange polarization effects in the interaction of closed-shell systems , 1977 .

[32]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[33]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[34]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[35]  B. Jeziorski,et al.  Variation-perturbation treatment of the hydrogen bond between water molecules , 1976 .

[36]  M. Dreyfus,et al.  A non-empirical study of the hydrogen bond between peptide units , 1970 .

[37]  W. Kutzelnigg The ‘‘primitive’’ wave function in the theory of intermolecular interactions , 1980 .

[38]  Kurt Friedrichs,et al.  Perturbation of Spectra in Hilbert Space , 1967 .

[39]  P. Burton,et al.  A CEPA2 investigation of the He-He and He-Li+ potential functions , 1986 .

[40]  Joyce J. Kaufman,et al.  Improved SCF interaction energy decomposition scheme corrected for basis set superposition effect , 1983 .

[41]  P. Otto,et al.  Investigation of the interaction between molecules at medium distances , 1977 .

[42]  P. Claverie,et al.  Computations of intermolecular interactions: Expansion of a charge-transfer energy contribution in the framework of an additive procedure. Applications to hydrogen-bonded systems , 1982 .

[43]  H. Monkhorst,et al.  On application of 0s orbitals in SCF calculations , 1981 .

[44]  J. Toennies On the validity of a modified Buckingham potential for the rare gas dimers at intermediate distances , 1973 .

[45]  W. Adams,et al.  On the Solution of the Hartree‐Fock Equation in Terms of Localized Orbitals , 1961 .

[46]  P. Fowler,et al.  The long range model of intermolecular forces , 1983 .