Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

[1]  D. Bliss,et al.  Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA. , 2004, Physical review letters.

[2]  B. Kusse,et al.  Factors affecting energy deposition and expansion in single wire low current experiments , 2004 .

[3]  S. Slutz,et al.  Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z-Pinch Dynamic Hohlraums , 2004 .

[4]  J. J. Ramirez,et al.  X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Slutz,et al.  Length scaling of dynamic-hohlraum axial radiation , 2003 .

[6]  James E. Bailey,et al.  Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies , 2003 .

[7]  R. Lemke,et al.  Trends in radiation production from dynamic-hohlraums driven by single and nested wire arrays , 2003 .

[8]  S. Slutz,et al.  Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation. , 2003, Physical review letters.

[9]  N. Roderick,et al.  Unexpected axial asymmetry in radiated power from high-temperature dynamic-hohlraum x-ray sources , 2003 .

[10]  R. G. Adams,et al.  Demonstration of radiation symmetry control for inertial confinement fusion in double Z-pinch hohlraums. , 2003, Physical review letters.

[11]  P. Peterson,et al.  Low mass recyclable transmission lines for Z-pinch driven inertial fusion , 2003 .

[12]  R. G. Adams,et al.  Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum. , 2002, Physical review letters.

[13]  G. R. Bennett,et al.  Dynamic hohlraum driven inertial fusion capsules , 2002 .

[14]  G. M. Oleinik,et al.  Polarity effect for exploding wires in a vacuum. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  R. Lemke,et al.  Dynamics and characteristics of a 215-eV dynamic-hohlraum x-ray source on Z , 2002 .

[16]  G. R. Bennett,et al.  Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions. , 2002, Physical review letters.

[17]  A. Dangor,et al.  Snowplow-like behavior in the implosion phase of wire array Z pinches , 2002 .

[18]  C. Coverdale,et al.  Optimal wire-number range for high x-ray power in long-implosion-time aluminum Z pinches. , 2002, Physical review letters.

[19]  K. H. Kwek,et al.  Effect of discrete wires on the implosion dynamics of wire array Z pinches , 2001 .

[20]  J. Chittenden,et al.  The different dynamical modes of nested wire array Z pinches , 2001 .

[21]  G. Chandler,et al.  Hohlraum temperature inference via measurement of aluminum shock velocity and time- and spatially resolved x-ray re-emission , 2001 .

[22]  R. Bowers,et al.  Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV , 2000 .

[23]  R. Bowers,et al.  Z-Pinch-Generated X Rays Demonstrate Potential for Indirect-Drive ICF Experiments , 1999 .

[24]  R. Bowers,et al.  Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch , 1999 .

[25]  J. Chittenden,et al.  Plasma Formation and Implosion Structure in Wire Array Z Pinches , 1999 .

[26]  R. Bowers,et al.  Insights and applications of two-dimensional simulations to Z-pinch experiments , 1999 .

[27]  G. Chandler,et al.  Indirect-drive ICF target concepts for the X-1 Z-pinch facility , 1999 .

[28]  R. Bowers,et al.  High-temperature dynamic hohlraums on the pulsed power driver Z , 1998 .

[29]  S. Wilks,et al.  Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories , 1998 .

[30]  R. Bowers,et al.  Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches , 1998 .

[31]  G. O. Allshouse,et al.  Wire number doubling in high-wire-number regime increases Z-accelerator X-ray power , 1998 .

[32]  John Lindl,et al.  Lawrence Livermore National Laboratory's activities to achieve ignition by x-ray drive on the National Ignition Facility , 1998 .

[33]  M. Haines A heuristic model of the wire array Z-pinch , 1998, 25th Anniversary, IEEE Conference Record - Abstracts. 1998 IEEE International Conference on Plasma Science (Cat. No.98CH36221).

[34]  R. Bowers,et al.  Radiation environments produced by plasma z-pinch stagnation on central targets , 1998 .

[35]  G. Chandler,et al.  Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .

[36]  Peter A. Amendt,et al.  HOHLRAUM RADIATION DRIVE MEASUREMENTS ON THE OMEGA LASER , 1997 .

[37]  G. Chandler,et al.  Inertial confinement fusion ablator physics experiments on Saturn and Nova , 1997 .

[38]  Mosher,et al.  Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches. , 1996, Physical review letters.

[39]  V. Smirnov Fast liners for inertial fusion , 1991 .

[40]  R. Bowers,et al.  Two‐dimensional modeling of magnetically driven Rayleigh–Taylor instabilities in cylindrical Z pinches , 1996 .