Multi-Photon Molecular Excitation in Laser-Scanning Microscopy

[1]  E M Callaway,et al.  Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[3]  Clemens Storz,et al.  NONLINEAR ABSORPTION EXTENDS CONFOCAL FLUORESCENCE MICROSCOPY INTO THE ULTRA-VIOLET REGIME AND CONFINES THE ILLUMINATION VOLUME , 1994 .

[4]  Chi‐Kuang Sun,et al.  Multiphoton confocal microscopy using a femtosecond Cr:Forsterite laser , 2006 .

[5]  J. Sanes,et al.  Neurotransmitter Receptor Dynamics Studied In Vivo by Reversible Photo-Unbinding of Fluorescent Ligands , 2002, Neuron.

[6]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[7]  O. Nakamura,et al.  Three-dimensional imaging characteristics of laser scan fluorescence microscopy--Two-photon excitation vs.single-photon excitation , 1993 .

[8]  G. Bearman,et al.  Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. , 2001, Journal of biomedical optics.

[9]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[10]  G I Stegeman,et al.  Large molecular third-order optical nonlinearities in polarized carotenoids. , 1997, Science.

[11]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[12]  Paras N. Prasad,et al.  Nonlinear optical properties of a new chromophore , 1997 .

[13]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[14]  S. Hell,et al.  Time multiplexing and parallelization in multifocal multiphoton microscopy , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  U. Keller Ultrafast all-solid-state laser technology , 1994 .

[16]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[17]  William A. Mohler,et al.  Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis , 1998, Current Biology.

[18]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[19]  T Nielsen,et al.  High efficiency beam splitter for multifocal multiphoton microscopy , 2001, Journal of microscopy.

[20]  D. Tank,et al.  Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. , 2002, Applied optics.

[21]  W. M. McClain Two-photon molecular spectroscopy , 1974 .

[22]  R. Birge,et al.  A theoretical analysis of the two‐photon properties of linear polyenes and the visual chromophores , 1979 .

[23]  Qinghong Zhang,et al.  Regulation of Corepressor Function by Nuclear NADH , 2002, Science.

[24]  Timothy R. Gosnell,et al.  Selected papers on ultrafast laser technology , 1991 .

[25]  W. Webb,et al.  Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm. , 1998, Applied optics.

[26]  Michael G. Strintzis,et al.  Lossless coding and visualization of 3‐D medical images with lossy preview capability , 1996 .

[27]  W. Denk,et al.  Comparison of one- and two-photon optical beam-induced current imaging , 1999 .

[28]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[29]  Watt W Webb,et al.  Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. , 2002, Biophysical journal.

[30]  In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy , 2001, Nature Medicine.

[31]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[32]  Wei Wu,et al.  Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue. , 2001, Tissue engineering.

[33]  F. Lytle,et al.  p-Bis(o-methylstyryl)benzene as a power-squared sensor for two-photon absorption measurements between 537 and 694 nm , 1986 .

[34]  K. König,et al.  Photodynamic effects on human and chicken erythrocytes studied with microirradiation and confocal laser scanning microscopy , 1996, Lasers in surgery and medicine.

[35]  M. Gu,et al.  Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation. , 1999, Applied optics.

[36]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[37]  J. Squier,et al.  Dispersion pre‐compensation of 15 femtosecond optical pulses for high‐numerical‐aperture objectives , 1998, Journal of microscopy.

[38]  C. Patel,et al.  Pulsed optoacoustic spectroscopy of condensed matter , 1981 .

[39]  D. Kleinfeld,et al.  Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Stefan W. Hell,et al.  Multifocal multiphoton microscopy: A fast and efficient tool for 3‐D fluorescence imaging , 1998 .

[41]  M. Goodman,et al.  Rapid scanning confocal microscopy. , 1993, Methods in cell biology.

[42]  K. V. van Holde,et al.  Two-photon excitation microscopy of tryptophan-containing proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Singh,et al.  Three-Photon Absorption in Napthalene Crystals by Laser Excitation , 1964 .

[44]  R. Fork,et al.  Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain , 1986 .

[45]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[46]  C. Tang,et al.  High-repetition-rate femtosecond optical parametric oscillator based on CsTiOAsO(4). , 1994, Optics letters.

[47]  Pekka Hänninen,et al.  Continuous wave excitation two‐photon fluorescence microscopy , 1994 .

[48]  Haigen Huang,et al.  Analysis of pancreatic development in living transgenic zebrafish embryos , 2001, Molecular and Cellular Endocrinology.

[49]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[50]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[51]  W. Webb,et al.  Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Pekka Hänninen,et al.  Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser , 1996 .

[54]  C. Bindhu,et al.  Two and Three Photon Absorption in Rhodamine 6G Methanol Solutions Using Pulsed Thermal Lens Technique , 1998 .

[55]  W. M. McClain Excited State Symmetry Assignment Through Polarized Two‐Photon Absorption Studies of Fluids , 1971 .

[56]  Imaging Performance of Confocal Fluorescence Microscopes with Finite-sized Source , 1994 .

[57]  C. Seidel,et al.  Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. , 1998, Analytical chemistry.

[58]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[59]  W. Denk,et al.  Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. , 1989, Biochemistry.

[60]  Jerome Mertz,et al.  Optimization of quadrupolar chromophores for molecular two-photon absorption , 2002 .

[61]  Da-Ting Lin,et al.  Multi-photon laser scanning microscopy using an acoustic optical deflector. , 2002, Biophysical journal.

[62]  Robert R. Birge,et al.  Two-photon spectroscopy of protein-bound chromophores , 1986 .

[63]  S. Hell,et al.  Time-multiplexed multifocal multiphoton microscope. , 2001, Optics letters.

[64]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[65]  B. Athey,et al.  Real‐time two‐photon confocal microscopy using a femtosecond, amplified Ti:sapphire system , 1996, Journal of microscopy.

[66]  Martin Oheim,et al.  Two-photon imaging of capillary blood flow in olfactory bulb glomeruli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  V. Centonze,et al.  Three‐photon excitation fluorescence imaging of biological specimens using an all‐solid‐state laser , 1996 .

[68]  W. Webb,et al.  Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. , 1994, Applied optics.

[69]  Brian J. Bacskai,et al.  Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy , 2001, Nature Medicine.

[70]  Jun Ye,et al.  High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers. , 2002, Optics letters.

[71]  M. Dantus,et al.  Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses , 2003 .

[72]  W. Webb,et al.  A confocal laser scanning microscope designed for indicators with ultraviolet excitation wavelengths. , 1994, The American journal of physiology.

[73]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J B Shear,et al.  Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. , 1999, Biophysical journal.

[75]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[76]  G. Patterson,et al.  Photobleaching in two-photon excitation microscopy. , 2000, Biophysical journal.

[77]  Thomas Feurer,et al.  Characterization and optimization of a laser-scanning microscope in the femtosecond regime , 1998 .

[78]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[79]  A. Miziolek,et al.  Ultrasensitive Laser Spectroscopy , 1985 .

[80]  P. Davidovits,et al.  Scanning Laser Microscope , 1969, Nature.

[81]  E. Neher,et al.  Highly nonlinear photodamage in two-photon fluorescence microscopy. , 2001, Biophysical journal.

[82]  E Neher,et al.  Fast scanning and efficient photodetection in a simple two-photon microscope , 1999, Journal of Neuroscience Methods.

[83]  Allister I. Ferguson,et al.  Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy , 1992 .

[84]  Andreas Volkmer,et al.  Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay , 2002 .

[85]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[86]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[87]  Patrik R. Callis,et al.  Two-photon electronic spectra of nucleotides , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[88]  Patrik R. Callis,et al.  Two-photon fluorescence excitation spectra of aromatic amino acids , 1993 .

[89]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[90]  S W Hell,et al.  Heating by absorption in the focus of an objective lens. , 1998, Optics letters.

[91]  S. Tsuda,et al.  Two-photon-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diode-pumped Cr:LiSrAlFl laser. , 1996, Optics letters.

[92]  C. J. R. Sheppard,et al.  Effects of aberrating layers and tube length on con focal imaging properties , 1991 .

[93]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[94]  U. Keller Materials and new approaches for ultrashot pulse lasers , 1996 .

[95]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[96]  E. Gratton,et al.  Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation. , 2000, Biopolymers.

[97]  W. Webb,et al.  Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. , 1997, Applied optics.

[98]  W. Webb,et al.  MULTIPHOTON IMAGING OF ALZHEIMER??S DISEASE NEUROPATHOLOGY: , 1998 .

[99]  C. Garrett,et al.  Two-photon excitation in CaF2:Eu2+ , 2003 .

[100]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Jerome Mertz,et al.  Epifluorescence collection in two-photon microscopy. , 2002, Applied optics.

[102]  Paras N. Prasad,et al.  New Class of Two-Photon-Absorbing Chromophores Based on Dithienothiophene , 2000 .

[103]  J Mertz,et al.  Coherent scattering in multi-harmonic light microscopy. , 2001, Biophysical journal.

[104]  R. Birge,et al.  Two‐photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low‐lying 1A*−g‐like and 1B*+u‐like π, π* states , 1990 .

[105]  K J Halbhuber,et al.  Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. , 1999, Optics letters.

[106]  Jerome Mertz,et al.  New quadrupolar fluorophores with high two-photon excited fluorescence , 1999 .

[107]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[108]  J. Whinnery Laser measurement of optical absorption in liquids , 1974 .

[109]  K J Halbhuber,et al.  Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses. , 2006, Scanning.

[110]  Eric Mazur,et al.  Time-decorrelated multifocal micromachining and trapping , 2001 .

[111]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[112]  W. M. McClain,et al.  Two-Photon Molecular Electronic Spectroscopy , 1980 .

[113]  W. Webb,et al.  Three‐dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two‐photon excitation laser scanning microscopy , 1995, Journal of microscopy.

[114]  Hell,et al.  Continuous wave excitation two‐photon fluorescence microscopy exemplified with the 647‐nm ArKr laser line , 1998, Journal of microscopy.

[115]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[116]  D. Piston,et al.  The efficiency of two-photon photolysis of a "caged" fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals , 2002, European Biophysics Journal.

[117]  Colin J. R. Sheppard,et al.  Image formation in two-photon fluorescence microscopy , 1990 .

[118]  E. Audinat,et al.  Action Potential Propagation in Dendrites of Rat Mitral Cells In Vivo , 2003, The Journal of Neuroscience.

[119]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[120]  J Guild,et al.  Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. , 1995, Optics letters.

[121]  O. S. Mortensen,et al.  Initial and final molecular states as ‘‘virtual states’’ in two‐photon processes , 1981 .

[122]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[123]  B T Hyman,et al.  Growth Arrest of Individual Senile Plaques in a Model of Alzheimer's Disease Observed by In Vivo Multiphoton Microscopy , 2001, The Journal of Neuroscience.

[124]  A. Periasamy,et al.  An evaluation of two‐photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in xenopus morphogenesis , 1999, Microscopy research and technique.

[125]  Alexander L Gaeta,et al.  Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. , 2002, Optics letters.

[126]  Winfried Denk,et al.  Two-photon optical beam induced current (OBIC) imaging through the backside of integrated circuits , 1997 .

[127]  W. Denk,et al.  Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[128]  H. V. van Driel,et al.  High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser. , 1992, Optics letters.

[129]  K J Halbhuber,et al.  Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. , 2001, Experimental cell research.

[130]  Knobel,et al.  Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy , 1998, Microscopy and Microanalysis.

[131]  D. E. Spence 60-fsecpulse generation from a self-mode-locked Ti: sapphire laser , 1991 .

[132]  M. Fricker,et al.  Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two‐photon laser scanning microscopy , 2000, Journal of microscopy.

[133]  R Gauderon,et al.  Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy. , 1999, Applied optics.

[134]  J. Kao 2 – PHOTOSENSITIVE CAGED COMPOUNDS: Design, Properties, and Biological Applications , 1993 .

[135]  W. Denk,et al.  Two-photon excitation in functional biological imaging. , 1996, Journal of biomedical optics.

[136]  B R Masters,et al.  Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. , 1997, Biophysical journal.

[137]  Marcos Dantus,et al.  Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases , 2002 .

[138]  R. Harris-Warrick,et al.  Highly Localized Ca2+ Accumulation Revealed by Multiphoton Microscopy in an Identified Motoneuron and Its Modulation by Dopamine , 2000, The Journal of Neuroscience.

[139]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[140]  S W Hell,et al.  Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation. , 1998, Optics letters.

[141]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[142]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[143]  W. Webb,et al.  Design of organic molecules with large two-photon absorption cross sections. , 1998, Science.

[144]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[145]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[146]  M H Ellisman,et al.  Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. , 1999, Biophysical journal.

[147]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[148]  S W Hell,et al.  Space‐multiplexed multifocal nonlinear microscopy , 2001, Journal of microscopy.

[149]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[150]  P. Prasad,et al.  Two-photon absorption and optical-limiting properties of novel organic compounds. , 1995, Optics letters.

[151]  C. Garrett,et al.  Two-Photon Excitation in CaF 2 : Eu 2+ , 1961 .

[152]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[153]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[154]  Paras N. Prasad,et al.  Novel Two-Photon Absorbing Dendritic Structures , 2000 .

[155]  J. Perry,et al.  Tuning the two-photon absorption response of quadrupolar organic molecules , 2002 .

[156]  R Kompfner,et al.  Resonant scanning optical microscope. , 1978, Applied optics.

[157]  Jiamin Liu,et al.  Efficient generation of ultrashort, wavelength-tunable infrared pulses , 1991 .

[158]  C. Sheppard,et al.  Theory and practice of scanning optical microscopy , 1984 .

[159]  Timothy A. Skimina,et al.  Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Carol J. Cogswell,et al.  Confocal Microscopy with Detector Arrays , 1990 .

[161]  David W Piston,et al.  Real-time Analysis of Glucose Metabolism by Microscopy , 1999, Trends in Endocrinology & Metabolism.

[162]  W. Webb,et al.  Measuring Serotonin Distribution in Live Cells with Three-Photon Excitation , 1997, Science.

[163]  John J. Lemasters,et al.  Optical microscopy: emerging methods and applications , 1993 .

[164]  John R. Lawrence,et al.  Assessment of Fluorochromes for Two-Photon Laser Scanning Microscopy of Biofilms , 2002, Applied and Environmental Microbiology.

[165]  F. Groen,et al.  The one-point fluorescence response in confocal microscopy , 1991 .

[166]  John White,et al.  Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability , 1999, Nature Biotechnology.

[167]  David R. Sandison,et al.  Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser-scanning microscopy , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[168]  M. Marko,et al.  A Stereometric Analysis of Karyokinesis, Cytokinesis and Cell Arrangements during and following Fourth Cleavage Period in the Sea Urchin, Lytechinus variegatus , 1993, Development, growth & differentiation.

[169]  R. Summers,et al.  The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry. , 1996, Developmental biology.

[170]  M. Dickinson,et al.  Using electroporation and lipid-mediated transfection of GFP-expressing plasmids to label embryonic avian cells for vital confocal and two-photon microscopy. , 2002, Differentiation; research in biological diversity.

[171]  Seth R. Goldstein,et al.  An improved no-moving-parts video-rate confocal microscope , 1992 .

[172]  W. Webb,et al.  IN VIVO MULTIPHOTON IMAGING OF AMYLOID DEPOSITION IN TRANSGENIC MICE , 1999 .

[173]  Jeffrey A. Squier,et al.  Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation , 1998 .

[174]  Allister I. Ferguson,et al.  All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging , 1996 .

[175]  Jerome Mertz,et al.  Ultra-deep two-photon fluorescence excitation in turbid media , 2001 .

[176]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[177]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[178]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.