Unweighting multijet event generation using factorisation-aware neural networks

,

[1]  A. Butter,et al.  MadNIS -- Neural Multi-Channel Importance Sampling , 2022, 2212.06172.

[2]  D. Whiteson,et al.  Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning , 2022, ArXiv.

[3]  T. Martin,et al.  Accelerating LHC event generation with simplified pilot runs and fast PDFs , 2022, The European Physical Journal C.

[4]  A. Butter,et al.  Loop amplitudes from precision networks , 2022, SciPost Physics Core.

[5]  S. Schumann,et al.  Exploring phase space with nested sampling , 2022, The European Physical Journal C.

[6]  M. Baker,et al.  Event Generators for High-Energy Physics Experiments , 2022, 2203.11110.

[7]  D. Whiteson,et al.  Machine learning and LHC event generation , 2022, SciPost Physics.

[8]  F. Siegert,et al.  Accelerating Monte Carlo event generation -- rejection sampling using neural network event-weight estimates , 2021, SciPost Physics.

[9]  S. Hoeche,et al.  Many-gluon tree amplitudes on modern GPUs: A case study for novel event generators , 2021, SciPost Physics Codebases.

[10]  Lan V. Truong,et al.  Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment , 2021, Journal of High Energy Physics.

[11]  D. Maître,et al.  A factorisation-aware matrix element emulator , 2021, Journal of High Energy Physics.

[12]  Simon Badger,et al.  Optimising simulations for diphoton production at hadron colliders using amplitude neural networks , 2021, Journal of High Energy Physics.

[13]  Rob Verheyen,et al.  Phase space sampling and inference from weighted events with autoregressive flows , 2020, SciPost Physics.

[14]  Z. Marshall,et al.  Challenges in Monte Carlo Event Generator Software for High-Luminosity LHC , 2020, Computing and Software for Big Science.

[15]  Matthew D. Klimek,et al.  Improved neural network Monte Carlo simulation , 2020, 2009.07819.

[16]  H. Schulz,et al.  Event generation with normalizing flows , 2020, Physical Review D.

[17]  S. Schumann,et al.  Exploring phase space with Neural Importance Sampling , 2020, SciPost Physics.

[18]  Steffen Schumann,et al.  Event generation with Sherpa 2.2 , 2019, SciPost Physics.

[19]  H. Schulz,et al.  Simulation of vector boson plus many jet final states at the high luminosity LHC , 2019, Physical Review D.

[20]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[21]  Kenji Doya,et al.  Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning , 2017, Neural Networks.

[22]  Quoc V. Le,et al.  Searching for Activation Functions , 2018, arXiv.

[23]  M. Schonherr,et al.  An automated subtraction of NLO EW infrared divergences , 2017, The European Physical Journal C.

[24]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[25]  S. Schumann,et al.  Reweighting QCD matrix-element and parton-shower calculations , 2016, 1606.08753.

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  F. Siegert,et al.  Beyond standard model calculations with Sherpa , 2014, The European physical journal. C, Particles and fields.

[28]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[29]  Steffen Schumann,et al.  MC3 - A Multi-Channel Markov Chain Monte Carlo algorithm for phase-space sampling , 2014, Comput. Phys. Commun..

[30]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[31]  F. Siegert,et al.  QCD matrix elements + parton showers. The NLO case , 2012, Journal of High Energy Physics.

[32]  E. Nurse,et al.  General-purpose event generators for LHC physics , 2011, 1101.2599.

[33]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[34]  Frank Siegert,et al.  QCD matrix elements and truncated showers , 2009, 0903.1219.

[35]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[36]  T. Gleisberg,et al.  Comix, a new matrix element generator , 2008, 0808.3674.

[37]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[38]  Tanju Gleisberg,et al.  Automating dipole subtraction for QCD NLO calculations , 2007, 0709.2881.

[39]  L. Lönnblad,et al.  Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions , 2007, 0706.2569.

[40]  F. Maltoni,et al.  Color-dressed recursive relations for multi-parton amplitudes , 2006, hep-ph/0607057.

[41]  S. Willenbrock,et al.  Color-flow decomposition of QCD amplitudes , 2002, hep-ph/0209271.

[42]  Z. Trocsanyi,et al.  The Dipole Formalism for Next-to-Leading Order QCD Calculations with Massive Partons , 2002, hep-ph/0201036.

[43]  G. Soff,et al.  AMEGIC++ 1.0: A Matrix element generator in C++ , 2001, hep-ph/0109036.

[44]  Leif Lönnblad,et al.  Correcting the Colour-Dipole Cascade Model with Fixed Order Matrix Elements , 2001 .

[45]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[46]  T. Ohl Vegas revisited : Adaptive Monte Carlo integration beyond factorization , 1998, hep-ph/9806432.

[47]  M. Seymour,et al.  A general algorithm for calculating jet cross sections in NLO QCD , 1996, hep-ph/9605323.

[48]  R. Kleiss,et al.  Weight optimization in multichannel Monte Carlo , 1994 .

[49]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .