On the Complexity of Real Root Isolation

We introduce a new approach to isolate the real roots of a square-free polynomial $F=\sum_{i=0}^n A_i x^i$ with real coefficients. It is assumed that each coefficient of $F$ can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy to implement. Compared to previous approaches, our new method achieves a significantly better bit complexity. It is further shown that the hardness of isolating the real roots of $F$ is exclusively determined by the geometry of the roots and not by the complexity or the size of the coefficients. For the special case where $F$ has integer coefficients of maximal bitsize $\tau$, our bound on the bit complexity writes as $\tilde{O}(n^3\tau^2)$ which improves the best bounds known for existing practical algorithms by a factor of $n=deg F$. The crucial idea underlying the new approach is to run an approximate version of the Descartes method, where, in each subdivision step, we only consider approximations of the intermediate results to a certain precision. We give an upper bound on the maximal precision that is needed for isolating the roots of $F$. For integer polynomials, this bound is by a factor $n$ lower than that of the precision needed when using exact arithmetic explaining the improved bound on the bit complexity.

[1]  Edward D. Kim,et al.  Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .

[2]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[3]  Matsusaburô Fujtwara Über die Wurzeln der algebraischen Gleichungen , 1915 .

[4]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[5]  A. Rényi,et al.  On the zeros of polynomials , 1952 .

[6]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[7]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[8]  Z. Bažant,et al.  Addendum to the paper: Surface singularity and crack propagation☆ , 1980 .

[9]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[10]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .

[11]  Joachim von zur Gathen,et al.  Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.

[12]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[13]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[14]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[15]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[16]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[17]  N. Obreshkov Zeros of polynomials , 2003 .

[18]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[19]  Jürgen Gerhard,et al.  Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.

[20]  Kurt Mehlhorn,et al.  A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.

[21]  Alkiviadis G. Akritas,et al.  The fastest exact algorithms for the isolation of the real roots of a polynomial equation , 1980, Computing.

[22]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[23]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[24]  B. Mourrain,et al.  The Bernstein Basis and Real Root Isolation , 2007 .

[25]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[26]  Arno Eigenwillig Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .

[27]  Ioannis Z. Emiris,et al.  On the complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..

[28]  Arno Eigenwillig,et al.  Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .

[29]  Ioannis Z. Emiris,et al.  On the asymptotic and practical complexity of solving bivariate systems over the reals , 2009, J. Symb. Comput..

[30]  Kurt Mehlhorn,et al.  Isolating real roots of real polynomials , 2009, ISSAC '09.

[31]  Michael Kerber,et al.  Geometric algorithms for algebraic curves and surfaces , 2009 .

[32]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[33]  C. Yap,et al.  An Efficient and Exact Subdivision Algorithm for Isolating Complex Roots of a Polynomial and its Complexity Analysis , 2009 .

[34]  Michael Sagraloff,et al.  A General Approach to Isolating Roots of a Bitstream Polynomial , 2010, Math. Comput. Sci..

[35]  Michael Sagraloff,et al.  An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks , 2010, ALENEX.

[36]  Michael Sagraloff,et al.  Efficient real root approximation , 2011, ISSAC '11.

[37]  Elias P. Tsigaridas,et al.  Univariate real root isolation in an extension field , 2011, ISSAC '11.

[38]  Michael Sagraloff,et al.  A worst-case bound for topology computation of algebraic curves , 2011, J. Symb. Comput..