Biofouling in RO system: Mechanisms, monitoring and controlling

The reverse osmosis (RO) technology offers a solution for the shortage of pristine water resources worldwide, through its capacity on treating all water kinds such as seawater, wastewater, ground water and surface water. The main concern in using RO technology for water treatment is fouling problems, and in particular biofouling. Biofouling negatively affects the quality of RO product and renders RO a costly technology for water treatment. The key solution to reduce the risk of biofouling in RO system lies in understanding the process of biofouling formation, choosing an adequate biofilm monitoring technique and applying effective biofouling control treatment for the RO membrane system. In this paper, the mechanisms of microbial adhesion to RO membrane are illustrated along with the key factors that influence the microbial adhesion process. In addition to that, the common strategies for biofilm monitoring in water flow systems are reviewed with highlighting applications, advantages and disadvantages of each strategy. The common biofouling control methods for reducing the formation of biofouling in the RO system are also presented in this paper. The application of the environmentally friendly physical disinfection techniques for biofouling control in the RO membrane system is suggested in this paper.

[1]  Seungkwan Hong,et al.  Evaluation of membrane fouling potential by multiple membrane array system (MMAS): Measurements and applications , 2010 .

[2]  C. Russell,et al.  Synergism between ultrasonic waves and hydrogen peroxide in the killing of micro-organisms. , 1975, The Journal of applied bacteriology.

[3]  Yinggang Zheng,et al.  A novel fiber optical device for ultraviolet disinfection of water. , 2008, Journal of photochemistry and photobiology. B, Biology.

[4]  J. J. Sadhwani,et al.  Measurement of biofouling in seawater: some practical tests , 2008 .

[5]  T. Rossteuscher Online monitoring of biofilm in microchannels with thermal lens microscopy , 2009 .

[6]  N. Ashbolt,et al.  Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration. , 2009, Water research.

[7]  A. W. Downing,et al.  III. Researches on the effect of light upon Bacteria and other organisms , 1878, Proceedings of the Royal Society of London.

[8]  Jennifer L. Clancy,et al.  Using UV to inactivate Cryptosporidium , 2000 .

[9]  Malik Al-Ahmad,et al.  Biofuoling in RO membrane systems Part 1: Fundamentals and control , 2000 .

[10]  M. Elimelech,et al.  Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure , 2007 .

[11]  Linda K. Weavers,et al.  Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles , 2006 .

[12]  Alan Williams,et al.  Pulsed Electric Field Processing, Power Ultrasound and Other Emerging Technologies , 2006 .

[13]  J. Lawrence,et al.  Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot−Pseudomonas fluorescens , 1989, Microbial Ecology.

[14]  João G. Crespo,et al.  Optical and spectroscopic methods for biofilm examination and monitoring , 2002 .

[15]  H. Busscher,et al.  Specific and non-specific interactions in bacterial adhesion to solid substrata , 1987 .

[16]  Xiaohong Zhou,et al.  Estimation of Heterotrophic Biokinetic Parameters in Wastewater Biofilms from Oxygen Concentration Profiles by Microelectrode , 2012 .

[17]  Malte Hermansson,et al.  The DLVO theory in microbial adhesion , 1999 .

[18]  V. Adams,et al.  Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria , 1987 .

[19]  A. A. Arrage,et al.  On line, non-destructive biomass determiantion of bacterial biofilms by fluorometry , 1993 .

[20]  L. E. Applegate,et al.  New chloroamine process to control aftergrowth and biofouling in permasepR B-10 RO surface seawater plants , 1989 .

[21]  F. Volke,et al.  Combined application of 13C NMR spectroscopy and confocal laser scanning microscopy—Investigation on biofilm structure and physico-chemical properties , 2010 .

[22]  Menachem Elimelech,et al.  Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes , 2001 .

[23]  A. Archibald,et al.  Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus , 1984, Journal of bacteriology.

[24]  K. Košutić,et al.  Removal of organics from aqueous solutions by commercial RO and NF membranes of characterized porosities , 2002 .

[25]  John P. Scheltens Capacity in 2050 , 2000 .

[26]  Fluorescence spectrum-based biofouling prediction method for RO membrane systems , 2012 .

[27]  E. Margalit,et al.  The effect of UV pre-treatment on biofouling of BWRO membranes: A field study , 2011 .

[28]  Raed A. Al-Juboori,et al.  Investigating the efficiency of thermosonication for controlling biofouling in batch membrane systems , 2012 .

[29]  G. Svecevičius,et al.  Acute and Chronic Toxicity of Chlorine Dioxide (ClO2) and Chlorite (ClO2ˉ) to Rainbow Trout (Oncorhynchus mykiss) (4 pp) , 2005 .

[30]  Hilary M. Lappin-Scott,et al.  Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms , 2001, Applied and Environmental Microbiology.

[31]  G. McFeters,et al.  Physiological methods to study biofilm disinfection , 1995, Journal of Industrial Microbiology.

[32]  J. Costerton,et al.  Optical sectioning of microbial biofilms , 1991, Journal of bacteriology.

[33]  Cong-jie Gao,et al.  Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane , 2007 .

[34]  T T Eighmy,et al.  Electron microscopic examination of wastewater biofilm formation and structural components , 1983, Applied and environmental microbiology.

[35]  W B Amos,et al.  Re‐evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics , 2003, Journal of microscopy.

[36]  P. D. Brown,et al.  Comparison of environmental scanning electron microscopy with high vacuum scanning electron microscopy as applied to the assessment of cell morphology. , 2004, Journal of biomedical materials research. Part A.

[37]  F. Liu,et al.  Biofouling characteristics and identification of preponderant bacteria at different nutrient levels in batch tests of a recirculating cooling water system , 2011, Environmental technology.

[38]  M. Lechevallier,et al.  Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination , 2010, Applied and Environmental Microbiology.

[39]  C. Brennen Cavitation and Bubble Dynamics , 1995 .

[40]  E. Strauss,et al.  Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes , 1995, Applied and environmental microbiology.

[41]  Berrin Tansel,et al.  Deposition of extracellular polymeric substances (EPS) and microtopographical changes on membrane surfaces during intermittent filtration conditions , 2006 .

[42]  Anthony G. Fane,et al.  Adhesion of waste water bacteria to reverse osmosis membranes , 1998 .

[43]  H. Flemming,et al.  Biofouling in water systems – cases, causes and countermeasures , 2002, Applied Microbiology and Biotechnology.

[44]  P. Stewart,et al.  Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system , 2010 .

[45]  Amy E. Childress,et al.  Assessing short-range membrane–colloid interactions using surface energetics , 2002 .

[46]  A. Zydney,et al.  Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes , 1998 .

[47]  J. Schippers,et al.  Monitoring and controlling biofouling in an integrated membrane system , 2011 .

[48]  Bertram Manz,et al.  Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. , 2010, FEMS microbiology ecology.

[49]  T. Yusaf,et al.  Improving the performance of ultrasonic horn reactor for deactivating microorganisms in water , 2012 .

[50]  M. Jekel,et al.  Effect of slow sand filtration of treated wastewater as pre-treatment to UF , 2009 .

[51]  V. Lazarova,et al.  Biofilm characterization and activity analysis in water and wastewater treatment , 1995 .

[52]  S. Denyer,et al.  In vivo bioluminescence for studying the adhesion of bacteria , 1991 .

[53]  H. Flemming,et al.  Biocide-free antifouling strategy to protect RO membranes from biofouling , 1998 .

[54]  Marc Hendrickx,et al.  Effects of high electric field pulses on enzymes , 2001 .

[55]  J. A. López-Ramírez,et al.  Pre-treatment optimisation studies for secondary effluent reclamation with reverse osmosis. , 2003, Water research.

[56]  Nidal Hilal,et al.  A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy , 2004 .

[57]  R. Niessner,et al.  Photoacoustic absorption spectra of biofilms , 2003 .

[58]  Seockheon Lee,et al.  Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition , 2010 .

[59]  Wonyong Choi,et al.  Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. , 2004, Water research.

[60]  T J Mason,et al.  Potential uses of ultrasound in the biological decontamination of water. , 2003, Ultrasonics sonochemistry.

[61]  P. Williams,et al.  lux genes and the applications of bacterial bioluminescence. , 1992, Journal of general microbiology.

[62]  K. Schoenbach,et al.  The effect of pulsed electric fields on biological cells: experiments and applications , 1997 .

[63]  F. Besenbacher,et al.  Antifouling enzymes and the biochemistry of marine settlement. , 2008, Biotechnology advances.

[64]  H. Berg,et al.  A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. , 1984, Journal of general microbiology.

[65]  S. B. Surman,et al.  Comparison of microscope techniques for the examination of biofilms , 1996 .

[66]  Dohwan Kim,et al.  Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. , 2003, Chemosphere.

[67]  C. Mayer,et al.  13C nuclear magnetic resonance studies on selectively labeled bacterial biofilms , 2001, Journal of Industrial Microbiology and Biotechnology.

[68]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[69]  R. G. Gutman,et al.  Membrane filtration : the technology of pressure-driven crossflow processes , 1987 .

[70]  L. H. Thompson,et al.  Sonochemistry: Science and Engineering , 1999 .

[71]  T J Mason,et al.  The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions. , 2003, Ultrasonics sonochemistry.

[72]  Mukul M. Sharma,et al.  Adhesion Forces between E. c oli Bacteria and Biomaterial Surfaces , 1999 .

[73]  Luís F. Melo,et al.  Online Biofilm Monitoring , 2003 .

[74]  M. Loosdrecht,et al.  Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging , 2010 .

[75]  B. Hamrouni,et al.  RO membrane autopsy of Zarzis brackish water desalination plant , 2008 .

[76]  Anthony G. Fane,et al.  Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): Preliminary performance data and microbiological aspects of system operation , 1998 .

[77]  Z Lewandowski,et al.  Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. , 1997, Biotechnology and bioengineering.

[78]  F. Ollevier,et al.  Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. , 2010, Ultrasonics sonochemistry.

[79]  K. McGuigan,et al.  Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. , 2001, Water research.

[80]  T. Mattila-Sandholm,et al.  Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria , 1997 .

[81]  Siegfried Ripperger,et al.  Particle deposition and layer formation at the crossflow microfiltration , 1997 .

[82]  Henk J. Busscher,et al.  Interfacial re-arrangement in initial microbial adhesion to surfaces , 2010 .

[83]  J. Walz The effect of surface heterogeneities on colloidal forces , 1998 .

[84]  Johannes S. Vrouwenvelder,et al.  Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection , 2009 .

[85]  A. Decho Microbial biofilms in intertidal systems: an overview , 2000 .

[86]  S Notermans,et al.  Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. , 2000, International journal of food microbiology.

[87]  Gustavo V. Barbosa-Cánovas,et al.  Novel food processing technologies. , 2004 .

[88]  Jeannie L. Darby,et al.  Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems , 2000 .

[89]  R. Davis,et al.  Fourier tansform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria , 2010 .

[90]  M. S. Doulah Mechanism of disintegration of biological cells in ultrasonic cavitation , 1977, Biotechnology and bioengineering.

[91]  Thomas Schwartz,et al.  Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. , 2009, Chemosphere.

[92]  M. Fletcher The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene , 1977 .

[93]  James R. Mihelcic,et al.  Environmental Engineering: Fundamentals, Sustainability, Design , 2009 .

[94]  J. Magnin,et al.  Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1). , 2010, Ultrasonics sonochemistry.

[95]  P. Stewart,et al.  Biofilm removal caused by chemical treatments , 2000 .

[96]  Mohammad Nurul Alam Hawlader,et al.  Pretreatment of seawater: Results of pilot trials in Singapore , 2003 .

[97]  H. Lappin-Scott,et al.  Detachment, surface migration, and other dynamic behavior in bacterial biofilms revealed by digital time-lapse imaging. , 2001, Methods in enzymology.

[98]  Kyung Hyun Ahn,et al.  Effect of electric currents on bacterial detachment and inactivation , 2008, Biotechnology and bioengineering.

[99]  M. Reinhard,et al.  Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes , 2006 .

[100]  E. Salmon,et al.  High-resolution video-enhanced differential interference contrast light microscopy. , 2003, Methods in cell biology.

[101]  H C van der Mei,et al.  Physico-chemistry of initial microbial adhesive interactions--its mechanisms and methods for study. , 1999, FEMS microbiology reviews.

[102]  Parag R Gogate,et al.  Application of cavitational reactors for water disinfection: current status and path forward. , 2007, Journal of environmental management.

[103]  R. Niessner,et al.  Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-Matrix. , 2009, Water research.

[104]  D. Kooij,et al.  An in situ biofouling monitor for membrane systems , 2003 .

[105]  U. Zimmermann,et al.  Electrical breakdown, electropermeabilization and electrofusion. , 1986, Reviews of physiology, biochemistry and pharmacology.

[106]  T. Schwartz,et al.  Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system , 2003, Journal of applied microbiology.

[107]  Arnab Bhattacharya,et al.  Grafting: a versatile means to modify polymers Techniques, factors and applications , 2004 .

[108]  C. Gantzer,et al.  Degradation of the Poliovirus 1 genome by chlorine dioxide , 2006, Journal of applied microbiology.

[109]  P. Gervais,et al.  Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses. , 2007, International journal of food microbiology.

[110]  Vilasrao J. Kadam,et al.  Photoacoustic Spectroscopy and Its Applications – A Tutorial Review , 2010 .

[111]  Jay D. Keasling,et al.  Use of soft X-ray microscopy for analysis of early-stage biofilm formation , 1999 .

[112]  Menachem Elimelech,et al.  Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes , 1997 .

[113]  Qi-feng Liu,et al.  Pre-treatment strategies for seawater desalination by reverse osmosis system. , 2009 .

[114]  I. Watson,et al.  Inactivation of B. cereus spores on agar, stainless steel or in water with a combination of Nd:YAG laser and UV irradiation , 2006 .

[115]  Jennifer L. Clancy,et al.  Medium‐pressure UV for oocyst inactivation , 1999 .

[116]  Hans-Curt Flemming,et al.  Reverse osmosis membrane biofouling , 1997 .

[117]  Subrayal M. Reddy,et al.  Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? , 2005 .

[118]  A. Cabaj,et al.  UV inactivation, liquid-holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. , 2000, Journal of food protection.

[119]  Knud Aage Mørch,et al.  Cavitation inception by almost spherical solid particles in water , 2003 .

[120]  R. Farnood,et al.  A Literature Review of Ultrasound Technology and Its Application in Wastewater Disinfection , 2008 .

[121]  A. Fox,et al.  Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis. , 2007, Journal of microbiological methods.

[122]  Vacuum ultraviolet irradiation for natural organic matter removal , 2004 .

[123]  P. Cristiani,et al.  On-line biofilm monitoring by "BIOX" electrochemical probe. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[124]  L. Gill,et al.  Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya , 2010 .

[125]  C. Michiels,et al.  Generation of bactericidal and mutagenic components by pulsed electric field treatment. , 2004, International journal of food microbiology.

[126]  A. Peschel,et al.  Key Role of Teichoic Acid Net Charge inStaphylococcus aureus Colonization of Artificial Surfaces , 2001, Infection and Immunity.

[127]  Ute Helmine Bertheas,et al.  Use of DBNPA to control biofouling in RO systems , 2009 .

[128]  Seockheon Lee,et al.  Biocide application for controlling biofouling of SWRO membranes — an overview , 2009 .

[129]  E. Salmon,et al.  High-resolution video-enhanced differential interference contrast (VE-DIC) light microscopy. , 1998, Methods in cell biology.

[130]  F. Fry,et al.  Application of a disposable transparent filtration membrane to the infrared spectroscopic discrimination among bacterial species. , 2003, Journal of microbiological methods.

[131]  Seoktae Kang,et al.  Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. , 2005, Colloids and surfaces. B, Biointerfaces.

[132]  O. Tuovinen,et al.  Evaluation of fluorochromes for imaging bacteria in soil , 2003 .

[133]  S. Richardson,et al.  Identification of New Drinking Water Disinfection by - Products from Ozone, Chlorine Dioxide, Chloramine, and Chlorine , 2000 .

[134]  Xuerong Zhang,et al.  Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms , 2003, Applied and Environmental Microbiology.

[135]  H. C. van der Mei,et al.  Microbial Adhesion in Flow Displacement Systems , 2006, Clinical Microbiology Reviews.

[136]  E. Hoek,et al.  Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes , 2008 .

[137]  H. Ridgway,et al.  Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersulfone block copolymer: correlation of membrane surface properties with bacterial attachment , 1999 .

[138]  R. Chang Physical Chemistry for the Biosciences , 2005 .

[139]  P A Wilderer,et al.  Automated Confocal Laser Scanning Microscopy and Semiautomated Image Processing for Analysis of Biofilms , 1998, Applied and Environmental Microbiology.

[140]  Maria A M Reis,et al.  Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. , 2002, Journal of microbiological methods.

[141]  C. Navntoft,et al.  Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. , 2008, Journal of photochemistry and photobiology. B, Biology.

[142]  G. Oron,et al.  Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes , 2008 .

[143]  H. Koop,et al.  Aggregation of 27 oral bacteria by human whole saliva , 1989, Antonie van Leeuwenhoek.

[144]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[145]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[146]  E. A. Neppiras,et al.  Some experiments on the disintegration of yeast by high intensity ultrasound , 1964 .

[147]  J. Hoigne,et al.  Rate constants of reactions of ozone with organic and inorganic compounds in water—I. Non-dissociating organic compounds , 1983 .

[148]  T. G. M. Ven,et al.  Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels , 1981 .

[149]  Y. Benito,et al.  A parametrical study of disinfection with hydrodynamic cavitation. , 2008, Ultrasonics sonochemistry.

[150]  Young I Cho,et al.  Pulsed-power treatment for physical water treatment , 2005 .

[151]  T. Tyliszczak,et al.  Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. , 2006, Environmental science & technology.

[152]  J. Schmitt,et al.  Monitoring of fouling and biofouling in technical systems , 1998 .

[153]  Troy N. Green,et al.  IMPACT OF UV IRRADIATION ON CONTROLLING BIOFOULING PROBLEMS IN NF-SWRO DESALINATION PROCESS 1 , 2005 .

[154]  C. Collivignarelli,et al.  Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters , 2005 .

[155]  Joachim Klahre,et al.  Monitoring of biofouling in papermill process waters , 2000 .

[156]  L Tamachkiarow,et al.  On-line monitoring of biofilm formation in a brewery water pipeline system with a fibre optical device. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[157]  F. Chemat,et al.  Sono-oxidation treatment of humic substances in drinking water. , 2001, Ultrasonics sonochemistry.

[158]  T. Yusaf Mechanical treatment of microorganisms using ultrasound, shock and shear technology , 2011 .

[159]  J B Xavier,et al.  Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[160]  D. F. Ogletree,et al.  Soft X-ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source , 2006 .

[161]  M. Schöning,et al.  High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems , 2003 .

[162]  P. Westerhoff,et al.  Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. , 2007, Water research.

[163]  P. Setlow I will survive: protecting and repairing spore DNA , 1992, Journal of bacteriology.

[164]  P. Gogate,et al.  Engineering design method for cavitational reactors: I. Sonochemical reactors , 2000 .

[165]  Linda K. Weavers,et al.  Sonochemical reactions of dissolved organic matter , 2004 .

[166]  K. Marshall,et al.  Diversity in surface colonization behavior in marine bacteria , 1996, Journal of Industrial Microbiology.

[167]  G. Barbosa‐Cánovas,et al.  Microbial inactivation by ultrasound. , 2005 .

[168]  Young-June Choi,et al.  The effects of UV disinfection on drinking water quality in distribution systems. , 2010, Water research.

[169]  S. Karthikeyan,et al.  Monitoring the Organization of Microbial Biofilm Communities , 2000 .

[170]  Shinya Matsumoto,et al.  Bacterial adhesion: From mechanism to control , 2010 .

[171]  M. Elimelech,et al.  Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces. , 2006, Environmental science & technology.

[172]  Parag R. Gogate,et al.  A review of applications of cavitation in biochemical engineering/biotechnology , 2009 .

[173]  R. Niessner,et al.  Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy , 2009, Analytical and bioanalytical chemistry.

[174]  Marc A. Deshusses,et al.  Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release , 2004 .

[175]  C. Keevil Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[176]  C. Ogino,et al.  Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2 , 2005 .

[177]  B. Van der Bruggen,et al.  Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration , 1999 .

[178]  S. Condón,et al.  Influence of Temperature and Pressure on the Lethality of Ultrasound , 1998, Applied and Environmental Microbiology.

[179]  N. Sasikumar,et al.  Biofouling potential and environmental factors of seawater at a desalination plant intake , 2001 .

[180]  T. Pintelon,et al.  Validation of 3D simulations of reverse osmosis membrane biofouling , 2010, Biotechnology and bioengineering.

[181]  S. J. Caldwell,et al.  Multicellular Organization in a Degradative Biofilm Community , 1994, Applied and environmental microbiology.

[182]  Steve Siverns,et al.  UF membranes for RO desalination pretreatment , 2005 .

[183]  R. Niessner,et al.  A photoacoustic technique for depth-resolved in situ monitoring of biofilms. , 2002, Environmental science & technology.

[184]  S. Richardson Disinfection by-products and other emerging contaminants in drinking water , 2003 .

[185]  Indu Saxena,et al.  Autofluorescence-based bacteria detection using an optical fiber , 2002, SPIE BiOS.

[186]  A. Ngezahayo,et al.  In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. , 2008, Journal of microbiological methods.

[187]  G. Petrucci,et al.  Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks , 2005 .

[188]  F. Frimmel,et al.  Biofouling of ultra- and nanofiltration membranes fordrinking water treatment characterized by fluorescence in situ hybridization (FISH) , 2005 .

[189]  Seungkwan Hong,et al.  Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater , 2001 .

[190]  T. E. Cloete,et al.  The use of the Rotoscope as an online, real-time, non-destructive biofilm monitor , 2005 .

[191]  D. Combes,et al.  Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium , 2008, Biofouling.

[192]  R J Palmer,et al.  Modern microscopy in biofilm research: confocal microscopy and other approaches. , 1999, Current opinion in biotechnology.

[193]  J. Wingender,et al.  Chemical and physical methods for characterisation of biofilms , 2007 .

[194]  C. Nalepa,et al.  Biocides: Selection and Application , 2010 .

[195]  S. Kron Digital time-lapse microscopy of yeast cell growth. , 2002, Methods in enzymology.

[196]  A. Trueba Ruiz,et al.  Chemical treatments against biofouling on industrial equipment associated with marine related power generation technologies, a new approach to an old problem , 2011, OCEANS 2011 IEEE - Spain.

[197]  M. Britten,et al.  Characterization of adsorptive fouling on ultrafiltration membranes by peptides mixtures using contact angle measurements , 1994 .

[198]  Jaeweon Cho,et al.  Biodegradability, DBP formation, and membrane fouling potential of natural organic matter: characterization and controllability. , 2005, Environmental science & technology.

[199]  N Wisniewski,et al.  Characterization of implantable biosensor membrane biofouling , 2000, Fresenius' journal of analytical chemistry.

[200]  Richard M. Stuetz,et al.  Visualisation of polysaccharide fouling on microporous membrane using different characterisation techniques , 2007 .

[201]  John R. Lawrence,et al.  Confocal Laser Microscopy and Digital Image Analysis in Microbial Ecology , 1992 .

[202]  M.C.M. van Loosdrecht,et al.  Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes , 2011 .

[203]  Seungkwan Hong,et al.  Effect of solution chemistry on organic fouling of reverse osmosis membranes in seawater desalination , 2010 .

[204]  C. J. van Oss,et al.  Acid—base interfacial interactions in aqueous media , 1993 .

[205]  P. Lebaron,et al.  Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water , 2001 .

[206]  Menachem Elimelech,et al.  Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes. , 2009, Environmental science & technology.

[207]  M. Ludensky An automated system for biocide testing on biofilms* , 1998, Journal of Industrial Microbiology and Biotechnology.

[208]  H. Ridgway,et al.  Adhesion of a Mycobacterium sp. to cellulose diacetate membranes used in reverse osmosis , 1984, Applied and environmental microbiology.

[209]  J. Lawrence,et al.  Behavioral analysis of Vibrio parahaemolyticus variants in high- and low-viscosity microenvironments by use of digital image processing , 1992, Journal of bacteriology.

[210]  Bengt R. Johansson,et al.  Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae , 2001 .

[211]  R. Davies Observations on the use of ultrasound waves for the disruption of micro-organisms. , 1959, Biochimica et biophysica acta.

[212]  L. Cellini,et al.  Effect of alkaline pH on staphylococcal biofilm formation , 2012, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[213]  Shuang Liang,et al.  Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs) , 2010 .

[214]  R. Niessner,et al.  Investigation of biocide efficacy by photoacoustic biofilm monitoring. , 2004, Water research.

[215]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[216]  R. Pätzold,et al.  A new approach to non-destructive analysis of biofilms by confocal Raman microscopy , 2006, Analytical and bioanalytical chemistry.

[217]  D. Davies,et al.  A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms , 2008, Journal of bacteriology.

[218]  J. T. Staley GROWTH RATES OF ALGAE DETERMINED IN SITU USING AN IMMERSED MICROSCOPE 1 , 1971 .

[219]  D. White,et al.  Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques , 1995, Journal of Industrial Microbiology.

[220]  Aniruddha B. Pandit,et al.  Quantification of cavitation intensity in fluid bulk , 1995 .

[221]  N. Kalogerakis,et al.  Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation , 2007 .

[222]  B. M. Borkent,et al.  Reproducible cavitation activity in water-particle suspensions. , 2007, The Journal of the Acoustical Society of America.

[223]  S. Masayuki,et al.  Decomposition of nucleic acid molecules in pulsed electric field and its release from recombinantEscherichia coli , 1999 .

[224]  Christopher Bellona,et al.  Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations , 2010 .

[225]  A. B. Russell,et al.  An experimental study of an NaClO generator for anti-microbial applications in the food industry , 2002 .

[226]  How Yong Ng,et al.  Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature , 2008 .

[227]  M. Gómez,et al.  Urban wastewater disinfection by filtration technologies , 2006 .