High-Performance Photonic Integrated Circuits on Silicon

Heterogeneous integration of III–V semiconductor photonics combined with silicon foundry technology enables low-cost, high-performance photonic integrated circuits. Highly reliable lasers using epitaxial deposition of quantum dot lasers, with <2 mA threshold and lifetime >>100 years at 35 C have been demonstrated at University of California, Santa Barbara (UCSB) and can be manufactured at wafer scale. Reduction in the linewidth enhancement factor allows isolator-free operation. This technology enables cost-effective photonic integrated circuits for applications such as microwave photonics and data communications. Optical frequency synthesis with ∼1.5 Hz accuracy is demonstrated using heterogeneous integration. Silicon photonics applications that will benefit from future heterogeneous integration are also demonstrated, including high dynamic range microwave photonic links and optical switching technology that scales to hyperscale datacenters with hundreds of thousands of servers.

[1]  Hirohito Yamada Analysis of Optical Coupling for SOI Waveguides , 2010 .

[2]  Hervé Lefevre,et al.  The Fiber-Optic Gyroscope , 1992 .

[3]  Wei Li,et al.  Monolithic quantum-dot distributed feedback laser array on silicon , 2018, 1801.01052.

[4]  R. Alferness,et al.  Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57‐nm tuning range , 1992 .

[5]  Kei May Lau,et al.  Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. , 2017, Optics express.

[6]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[7]  Didier Colle,et al.  Power consumption modeling in optical multilayer networks , 2012, Photonic Network Communications.

[8]  J. Bowers,et al.  Quadruple reduction of threshold current density for microring quantum dot lasers epitaxially grown on (001) Si , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[9]  J. Bowers,et al.  On-Chip Detection from Directly Modulated Quantum Dot Microring Lasers on Si , 2018, 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama).

[10]  John E. Bowers,et al.  Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics , 2018, 2018 European Conference on Optical Communication (ECOC).

[11]  Vincent J. Urick,et al.  Fundamentals of Microwave Photonics , 2015 .

[12]  Christopher V. Poulton,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2017 .

[13]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[15]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .

[16]  Takuro Fujii,et al.  Heterogeneously integrated photonic crystal laser on Si , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[17]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[18]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[19]  H. Yamazaki,et al.  Silicon Photonic Hybrid Ring-Filter External Cavity Wavelength Tunable Lasers , 2015, Journal of Lightwave Technology.

[20]  J. Bowers,et al.  Effect of growth interruption in 1.55 μm InAs/InAlGaAs quantum dots on InP grown by molecular beam epitaxy , 2018, Journal of Applied Physics.

[21]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[22]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[23]  R. G. Beausoleil,et al.  Large-scale integrated photonics for high-performance interconnects , 2011, IEEE Photonic Society 24th Annual Meeting.

[24]  John E. Bowers,et al.  Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics , 2018, Applied Sciences.

[25]  D. Deppe,et al.  Low-threshold high-T/sub 0/ 1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region , 2002, IEEE Photonics Technology Letters.

[26]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[27]  Sources of RF Intermodulation Distortion in Silicon Photonic Modulators , 2018, 2018 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP).

[28]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[29]  James F Buckwalter,et al.  Forward bias operation of silicon photonic Mach Zehnder modulators for RF applications. , 2017, Optics express.

[30]  Luke Theogarajan,et al.  On-chip wavelength locking for photonic switches. , 2017, Optics letters.

[31]  Owers,et al.  Piezoelectrically tuned silicon nitride ring resonator , 2018 .

[32]  Heming Huang,et al.  Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon , 2018, Journal of the Optical Society of America B.

[33]  Qixiang Cheng,et al.  Photonic switching in high performance datacenters [Invited]. , 2018, Optics express.

[34]  Lin Yang,et al.  Method to improve the linearity of the silicon Mach-Zehnder optical modulator by doping control. , 2016, Optics express.

[35]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[36]  Ioannis Tomkos,et al.  Power consumption evaluation of all-optical data center networks , 2012, Cluster Computing.

[37]  H. Choi,et al.  GaAs‐based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer , 1991 .

[38]  Akhilesh S. P. Khope,et al.  Multi-wavelength selective crossbar switch. , 2019, Optics express.

[39]  Rajeev J. Ram,et al.  Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers , 2003 .

[40]  U. Koren,et al.  High performance tunable 1.5 μm InGaAs/InGaAsP multiple-quantum-well distributed-Bragg-reflector lasers , 1988, Conference Digest.,11th IEEE International Semiconductor Laser Conference.

[41]  Tin Komljenovic,et al.  Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2017, Optics express.

[42]  Amin Vahdat,et al.  Integrating microsecond circuit switching into the data center , 2013, SIGCOMM.

[43]  John E. Bowers,et al.  Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .

[44]  Michal Lipson,et al.  Linearized Silicon Modulator Based on a Ring Assisted Mach Zehnder Inteferometer References and Links , 2022 .

[45]  Timo Aalto,et al.  Low-loss spiral waveguides with ultra-small footprint on a micron scale SOI platform , 2014, Photonics West - Optoelectronic Materials and Devices.

[46]  Qi Li,et al.  Silicon Photonics for Exascale Systems , 2014, Journal of Lightwave Technology.

[47]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .

[48]  Jie Sun,et al.  Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process. , 2013, Optics letters.

[49]  R. Dupuis,et al.  Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates , 1987 .

[50]  Jun Ye,et al.  Continuously tunable, precise, single frequency optical signal generator. , 2002, Optics express.

[51]  K. Petermann,et al.  A simple analytic expression for the stable operation range of laser diodes with optical feedback , 1990 .

[52]  J. Bowers,et al.  Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability , 2018, Photonics Research.

[53]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[54]  Zeyu Zhang,et al.  Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency , 2018 .

[55]  Alwyn J. Seeds,et al.  1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2011 .

[56]  Govind P. Agrawal,et al.  Nonlinear mechanisms of filamentation in broad-area semiconductor lasers , 1996 .

[57]  Daniel J. Blumenthal,et al.  Silicon Nitride in Silicon Photonics , 2018, Proceedings of the IEEE.

[58]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[59]  V.J. Urick,et al.  Graphical Approach for Evaluating Performance Limitations in Externally Modulated Analog Photonic Links , 2008, IEEE Transactions on Microwave Theory and Techniques.

[60]  Qixiang Cheng,et al.  Highly-scalable, low-crosstalk architecture for ring-based optical space switch fabrics , 2017, 2017 IEEE Optical Interconnects Conference (OI).

[61]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[62]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[63]  John E. Bowers,et al.  Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[65]  John E. Bowers,et al.  Elastic WDM crossbar switch for data centers , 2016, 2016 IEEE Optical Interconnects Conference (OI).

[66]  L. Coldren,et al.  Fully integrated hybrid silicon two dimensional beam scanner. , 2015, Optics express.

[67]  John E. Bowers,et al.  High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si , 2017 .

[68]  J. Buckwalter,et al.  A 1 to 20 GHz Silicon-Germanium Low-Noise Distributed Driver for RF Silicon Photonic Mach-Zehnder Modulators , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[69]  T. H. Windhorn,et al.  AlGaAs double‐heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate , 1984 .

[70]  P. Smereka,et al.  Mechanisms of Stranski Krastanov Growth , 2011, 1101.3775.

[71]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[72]  Alan Y. Liu,et al.  Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[73]  Large-scale optical phased arrays enabled by silicon photonics , 2013, CLEO: 2013.

[74]  J. Bowers,et al.  1.3- $\mu$ m Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon , 2019, IEEE Photonics Technology Letters.

[75]  Adel A. M. Saleh,et al.  Scaling-out Data Centers Using Photonics Technologies , 2014 .

[76]  C. Roeloffzen,et al.  290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[77]  J. Bowers,et al.  Wide tunable double ring resonator coupled lasers , 2002, IEEE Photonics Technology Letters.

[78]  John Bowers,et al.  Photonic Integration With Epitaxial III–V on Silicon , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[80]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[81]  Meint K. Smit,et al.  JePPIX: access to generic foundry processes for InP photonic integrated circuits , 2014, 2014 IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP).

[82]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[83]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[84]  Robert G. Meyer,et al.  Distortion in variable-capacitance diodes , 1975 .

[85]  John E. Bowers,et al.  Elastic WDM switching for scalable data center and HPC interconnect networks , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[86]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[87]  F. Grillot,et al.  Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor , 2018, Applied Physics Letters.

[88]  Roberto Proietti,et al.  A Scalable, Low-Latency, High-Throughput, Optical Interconnect Architecture Based on Arrayed Waveguide Grating Routers , 2015, Journal of Lightwave Technology.