About Top-k Flexible Queries in Large Databases

The problem of obtaining efficient answers to topk queries has attracted a lot of research attention. Unfortunately, current top-k query processing techniques focus on Boolean queries, and cannot be applied to the large Data Bases (DB) seen the gigantic number of data. In this paper, we propose a new approach for top-k flexible queries taking into account another degree of granularity in the process of the evaluation of the query. We start by generating a MetaDB formed by a set of clusters resulting of a preliminary fuzzy classification on the data. This set represents a reduced view of the initial DB and permits to deduct the semantics of the initial DB. We prove that our approach permits an optimal search of the relevant data sources and generate automatically the better k answers while proposing a new operator called stratified operator for taking into account the user’s preferences. Keywords-Large databases; flexible query; preference; formal concept analysis; Top k.

[1]  Valiollah Tahani,et al.  A conceptual framework for fuzzy query processing - A step toward very intelligent database systems , 1977, Inf. Process. Manag..

[2]  Rokia Missaoui,et al.  An Incremental Concept Formation Approach for Learning from Databases , 1994, Theor. Comput. Sci..

[3]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[4]  Amihai Motro SEAVE: a mechanism for verifying user presuppositions in query systems , 1986, TOIS.

[5]  Patrick Bosc,et al.  SQLf: a relational database language for fuzzy querying , 1995, IEEE Trans. Fuzzy Syst..

[6]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[7]  Pasquale Savino,et al.  Retrieval of Multimedia Documents by Imprecise Query Specification , 1990, EDBT.

[8]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[9]  Didier Dubois,et al.  Bipolarity in Flexible Querying , 2002, FQAS.

[10]  Jianjun Zhou,et al.  Fuzzy Clustering - Principles, Methods and Examples , 1998 .

[11]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[13]  Kevin Chen-Chuan Chang,et al.  RankSQL: Supporting Ranking Queries in Relational Database Management Systems , 2005, VLDB.

[14]  M. Lacroix,et al.  Preferences; Putting More Knowledge into Queries , 1987, VLDB.

[15]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[16]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[17]  Hua Yang,et al.  CoBase: A scalable and extensible cooperative information system , 1996, Journal of Intelligent Information Systems.

[18]  Patrick Bosc,et al.  Aggregates Computed over Fuzzy Sets and their Integration into SQLF , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  Habib Ounelli,et al.  Interrogation flexible et coopérative d'une BD par abstraction conceptuelle hiérarchique , 2004, INFORSID.

[20]  Amihai Motro,et al.  VAGUE: a user interface to relational databases that permits vague queries , 1988, TOIS.

[21]  Ludovic Lietard,et al.  On the Definition of Extended Norms and Co-norms to Aggregate Fuzzy Bipolar Conditions , 2009, IFSA/EUSFLAT Conf..

[22]  Amihai Motro FLEX: A Tolerant and Cooperative User Interface to Databases , 1990, IEEE Trans. Knowl. Data Eng..

[23]  L. Lietard,et al.  Preferences and bipolarity in query languages , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[24]  Minyar Sassi Hidri,et al.  An Innovative Contribution to Flexible Query Through the Fusion of Conceptual Clustering, Fuzzy Logic, and Formal Concept Analysis , 2009, Int. J. Comput. Their Appl..

[25]  Wesley W. Chu,et al.  An error-based conceptual clustering method for providing approximate query answers , 1996, CACM.

[26]  Siu Cheung Hui,et al.  A Fuzzy FCA-based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data , 2004, CLA.

[27]  Minyar Sassi Hidri,et al.  Clustering Quality Evaluation Based on Fuzzy FCA , 2007, DEXA.

[28]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[29]  Ronald Fagin,et al.  Incorporating User Preferences in Multimedia Queries , 1997, ICDT.

[30]  Masahito Hirakawa,et al.  ARES: A relational database with the capability of performing flexible interpretation of queries , 1986, IEEE Transactions on Software Engineering.

[31]  Patrick Bosc,et al.  A propos de requêtes à préférences et diviseur stratifié , 2010, INFORSID.

[32]  Rudolf Wille,et al.  Lattices in Data Analysis: How to Draw Them with a Computer , 1989 .

[33]  Werner Kießling,et al.  Preference SQL - Design, Implementation, Experiences , 2002, VLDB.