Diversified Trajectory Pattern Ranking in Geo-tagged Social Media

Social media such as those residing in the popular photo sharing websites is attracting increasing attention in recent years. As a type of user-generated data, wisdom of the crowd is embedded inside such social media. In particular, millions of users upload to Flickr their photos, many associated with temporal and geographical information. In this paper, we investigate how to rank the trajectory patterns mined from the uploaded photos with geotags and timestamps. The main objective is to reveal the collective wisdom recorded in the seemingly isolated photos and the individual travel sequences reflected by the geo-tagged photos. Instead of focusing on mining frequent trajectory patterns from geo-tagged social media, we put more effort into ranking the mined trajectory patterns and diversifying the ranking results. Through leveraging the relationships among users, locations and trajectories, we rank the trajectory patterns. We then use an exemplar-based algorithm to diversify the results in order to discover the representative trajectory patterns. We have evaluated the proposed framework on 12 different cities using a Flickr dataset and demonstrated its effectiveness.

[1]  Xing Xie,et al.  Collaborative location and activity recommendations with GPS history data , 2010, WWW '10.

[2]  Tomoharu Iwata,et al.  Travel route recommendation using geotags in photo sharing sites , 2010, CIKM.

[3]  Mor Naaman,et al.  Towards automatic extraction of event and place semantics from flickr tags , 2007, SIGIR.

[4]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[5]  Sreenivas Gollapudi,et al.  An axiomatic approach for result diversification , 2009, WWW '09.

[6]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[7]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[8]  Jiebo Luo,et al.  Aworldwide tourism recommendation system based on geotaggedweb photos , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Dino Pedreschi,et al.  Trajectory pattern analysis for urban traffic , 2009, IWCTS '09.

[10]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[11]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[13]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[14]  Cong Yu,et al.  Automatic construction of travel itineraries using social breadcrumbs , 2010, HT '10.

[15]  Cong Yu,et al.  Constructing travel itineraries from tagged geo-temporal breadcrumbs , 2010, WWW '10.

[16]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[17]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[18]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[19]  Xing Xie,et al.  Mining city landmarks from blogs by graph modeling , 2009, ACM Multimedia.

[20]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[21]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[22]  Dimitrios Gunopulos,et al.  Rotation invariant distance measures for trajectories , 2004, KDD.

[23]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[24]  Rong Xiao,et al.  TravelScope: standing on the shoulders of dedicated travelers , 2009, ACM Multimedia.

[25]  Pavel Serdyukov,et al.  Placing flickr photos on a map , 2009, SIGIR.

[26]  Jiebo Luo,et al.  A WORLDWIDE TOURISM RECOMMENDATION SYSTEM BASED ON GEOTAGGED WEB PHOTOS , 2010 .

[27]  Nasser Yazdani,et al.  Matching and indexing sequences of different lengths , 1997, CIKM '97.

[28]  Jiang-Ming Yang,et al.  Generating location overviews with images and tags by mining user-generated travelogues , 2009, ACM Multimedia.

[29]  Jiebo Luo,et al.  Enhancing semantic and geographic annotation of web images via logistic canonical correlation regression , 2009, ACM Multimedia.

[30]  Kiyoharu Aizawa,et al.  Retrieving multimedia travel stories using location data and spatial queries , 2009, MM '09.

[31]  Adrian Popescu,et al.  Mining tourist information from user-supplied collections , 2009, CIKM.

[32]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Changhu Wang,et al.  Photo2Trip: generating travel routes from geo-tagged photos for trip planning , 2010, ACM Multimedia.

[34]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[35]  Adrian Popescu,et al.  Deducing trip related information from flickr , 2009, WWW '09.

[36]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[37]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .