Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze

We present bounds for the degree and the height of the polynomials arising in some central problems in effective algebraic geometry including the implicitation of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.

[1]  Éric Schost,et al.  Bit-size estimates for triangular sets in positive dimension , 2010, J. Complex..

[2]  Gaël Rémond Nombre de points rationnels des courbes , 2010 .

[3]  Carlos D'Andrea,et al.  The Newton Polygon of a Rational Plane Curve , 2007, Math. Comput. Sci..

[4]  Enrico Bombieri,et al.  Roots of Polynomials in Subgroups of and Applications to Congruences , 2008 .

[5]  Y. Bilu,et al.  Quantitative Riemann existence theorem over a number field , 2008, 0809.0345.

[6]  B. Sturmfels,et al.  ELIMINATION THEORY FOR TROPICAL VARIETIES , 2007, 0704.3471.

[7]  Patrice Philippon,et al.  HAUTEUR NORMALISÉE DES VARIÉTÉS TORIQUES PROJECTIVES , 2007, Journal of the Institute of Mathematics of Jussieu.

[8]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[9]  Y. Tschinkel,et al.  Effectivity of Brauer–Manin obstructions☆ , 2006, math/0612665.

[10]  A. Esterov,et al.  Elimination theory and Newton polytopes , 2006 .

[11]  Zbigniew Jelonek,et al.  On the effective Nullstellensatz , 2005 .

[12]  Matthias Aschenbrenner Ideal membership in polynomial rings over the integers , 2003, math/0305172.

[13]  M. Sombra The height of the mixed sparse resultant , 2002, math/0211449.

[14]  Y. Nesterenko,et al.  The Hilbert Nullstellensatz, Inequalities for Polynomials, and Algebraic Independence , 2001 .

[15]  Francesco Amoroso,et al.  Introduction to algebraic independence theory , 2001 .

[16]  V. Maillot Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables , 2000 .

[17]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[18]  Alain Yger,et al.  Residue calculus and effective Nullstellensatz , 1999 .

[19]  S. David,et al.  Minorations des hauteurs normalisées des sous-variétés des tores , 1999 .

[20]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[21]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[22]  P. Philippon,et al.  Sur des hauteurs alternatives III , 1995 .

[23]  Pierre Lelong Mesure de Mahler et calcul de constantes universelles pour les polynomes deN variables , 1994 .

[24]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[25]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[26]  Carlos A. Berenstein,et al.  Effective Bezout identities inQ[z1, ...,zn] , 1991 .

[27]  Patrice Philippon,et al.  Sur des hauteurs alternatives. I , 1991 .

[28]  Patrice Philippon,et al.  Dénominateurs dans le théorème des zéros de Hilbert , 1991 .

[29]  Bernard Teissier,et al.  Résultats récents d'algèbre commutative effective , 1990 .

[30]  Par Patrice Philippon,et al.  A propos du texte de W. D. Brownawell: “Bounds for the degrees in the Nullstellensatz” , 1988 .

[31]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[32]  Patrice Philippon,et al.  Critères Pour L’indépendance Algébrique , 1986 .

[33]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[34]  J. Jouanolou,et al.  Théorèmes de Bertini et applications , 1983 .

[35]  C. Smyth A Kronecker-Type Theorem for Complex Polynomials in Several Variables , 1981, Canadian Mathematical Bulletin.

[36]  T. Willmore Algebraic Geometry , 1973, Nature.

[37]  Oskar Perron Algebra, I, Die Grundlagen , 1951 .