Fast and Accurate Multiplicative Decomposition for Fringe Removal in Interferometric Images

Airborne hyperspectral images can be efficiently obtained with imaging static Fourier transform spectrometers. However, to be effective on any location, this technology requires to know the relief of the scene. This is not a straightforward process, as the horizontal interference fringes on the images, which are necessary for spectrum construction, prevent efficient stereoscopic processing. We present a novel variational model for multiplicative image decomposition to separate the fringes from the panchromatic image of the scene. This multiplicative model is much more physically accurate than previous additive decomposition models inspired by cartoon-texture decomposition. It combines fully smoothed total variation operators and one-dimensional (1-D) Fourier transform. Smoothed total variation is adopted to avoid staircasing artifacts caused by traditional total variation regularization. The use of a 1-D Fourier transform is suggested by the geometry of the fringes, in order to circumvent the lack of horizontal periodicity in the interferometric pattern. We also present an optimization algorithm. Finally, a second algorithm is introduced, whose convergence is not mathematically guaranteed. However, it systematically approaches the solution of the first one in much less computation time. Our experimental evaluation on real and simulated images shows that the proposed model separates fringes from the panchromatic image very accurately and that this accuracy significantly improves subpixel stereo matching results.

[1]  Bernard Rougé,et al.  Measuring and Improving Image Resolution by Adaptation of the Reciprocal Cell , 2004, Journal of Mathematical Imaging and Vision.

[2]  Jilu Feng,et al.  The topographic normalization of hyperspectral data: implications for the selection of spectral end members and lithologic mapping , 2003 .

[3]  Jinsong Zhou,et al.  Research on LASIS interferogram processing , 2015, International Symposium on Multispectral Image Processing and Pattern Recognition.

[4]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[5]  Yann Ferrec,et al.  Spectro-imagerie aéroportée par transformation de Fourier avec un interféromètre statique à décalage latéral : réalisation et mise en oeuvre , 2008 .

[6]  Pasquale Nino,et al.  Airborne hyperspectral scanner and laser altimeter data application to water reservoirs and water use calculation: first results on two Italian case study , 2005, SPIE Remote Sensing.

[7]  Wang Cailing,et al.  Improved MCA–TV algorithm for interference hyperspectral image decomposition , 2015 .

[8]  Hsiao-hua K. Burke,et al.  Satellite hyperspectral IR sensing: investigating water vapor variability using AIRS data , 2006, SPIE Defense + Commercial Sensing.

[9]  Paul G. Lucey,et al.  A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array , 2012, Defense + Commercial Sensing.

[10]  Mila Nikolova,et al.  Alternating block coordinate proximal forward-backward descent for nonconvex regularised problems with biconvex terms , 2017 .

[11]  Matthew L. Clark,et al.  Mapping of land cover in northern California with simulated hyperspectral satellite imagery , 2016 .

[12]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Clara Barbanson-Graziussi Correction des Effets de Relief en Spectro-imagerie Aéroportée , 2018 .

[14]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[15]  Min Yan,et al.  Research on ground-based LWIR hyperspectral imaging remote gas detection , 2015, Applied Optics and Photonics China.

[16]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[17]  L. Moisan How to discretize the Total Variation of an image? , 2007 .

[18]  M. Ramsey,et al.  Exploration of geothermal systems using hyperspectral thermal infrared remote sensing , 2013 .

[19]  Frédéric Baret,et al.  Comparison of Metrics for the Classification of Soils Under Variable Geometrical Conditions Using Hyperspectral Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[20]  Christophe Coudrain,et al.  Experimental results from an airborne static Fourier transform imaging spectrometer. , 2011, Applied optics.

[21]  I. Renhorn,et al.  Military applications of hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[22]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[23]  Thomas Cudahy,et al.  Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties , 2015 .

[24]  Nicolas Guerineau,et al.  Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared. , 2016, Optics letters.

[25]  Mila Nikolova,et al.  Fast Ordering Algorithm for Exact Histogram Specification , 2014, IEEE Transactions on Image Processing.

[26]  Thomas Cudahy,et al.  Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia , 2017 .

[27]  Jean-Michel Morel,et al.  Fast Cartoon + Texture Image Filters , 2010, IEEE Transactions on Image Processing.

[28]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[29]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[30]  Rebecca Castano,et al.  Characterization of a sulfur-rich Arctic spring site and field analog to Europa using hyperspectral data , 2010 .

[31]  Alessandra Marino,et al.  Imaging spectrometry and GIS techniques application for the study of seawater quality and pollution hazard , 2002, Optics + Photonics.

[32]  Véronique Carrère,et al.  Carbon dioxide of Pu`u`O`o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data , 2008 .

[33]  Alain P. Kattnig,et al.  SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures. , 2015, Optics express.

[34]  Pascal Monasse,et al.  Relief Computation from Images of a Fourier Transform Spectrometer for Interferogram Correction , 2016 .

[35]  Pascal Monasse,et al.  Quasi-Euclidean Epipolar Rectification , 2011, Image Process. Line.

[36]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[37]  Neus Sabater,et al.  Meaningful Matches in Stereovision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Xiang Zhou,et al.  Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. , 2012, Optics express.

[39]  Lionel Moisan,et al.  The Shannon Total Variation , 2017, Journal of Mathematical Imaging and Vision.

[40]  Kathrin Klamroth,et al.  Biconvex sets and optimization with biconvex functions: a survey and extensions , 2007, Math. Methods Oper. Res..

[41]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[42]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[43]  Paul G. Lucey,et al.  TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications , 2016, Asia-Pacific Remote Sensing.