Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.
暂无分享,去创建一个
Anna Fontcuberta i Morral | Patrick Parkinson | Daniel Rüffer | M. Johnston | L. Herz | A. Fontcuberta i Morral | H. Joyce | F. Amaduzzi | A. Casadei | D. Rüffer | F. Matteini | P. Parkinson | S. Conesa‐Boj | J. Boland | C. Davies | Federico Matteini | Sonia Conesa-Boj | Alberto Casadei | Gözde Tütüncüoglu | F. Jabeen | Fauzia Jabeen | Jessica L. Boland | Francesca Amaduzzi | Christopher L. Davies | Hannah. J. Joyce | Laura M. Herz | Michael B. Johnston | G. Tütüncüoglu
[1] V. Zwiller,et al. Single quantum dot nanowire LEDs. , 2007, Nano letters.
[2] D. Thompson,et al. GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.
[3] Matthew C. Beard,et al. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy , 2000 .
[4] Lars Samuelson,et al. Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.
[5] Delta(δ)‐doping of semiconductor nanowires , 2013 .
[6] Yu Huang,et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.
[7] Kenji Hiruma,et al. GaAs p‐n junction formed in quantum wire crystals , 1992 .
[8] William L. Barnes,et al. REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .
[9] D. Grützmacher,et al. MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .
[10] A. Fontcuberta i Morral,et al. P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.
[11] Jesper Wallentin,et al. Doping of semiconductor nanowires , 2011 .
[12] Laura M Herz,et al. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.
[13] Chennupati Jagadish,et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. , 2012, Nano letters.
[14] M. Ramsteiner,et al. Shell-doping of GaAs nanowires with Si for n-type conductivity , 2012, Nano Research.
[15] Charles M. Lieber,et al. Single nanowire photovoltaics. , 2009, Chemical Society reviews.
[16] H. Tan,et al. III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).
[17] A. Bertoni,et al. Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire. , 2014, Nano letters.
[18] Ali A. Rezazadeh,et al. Empirical low-field mobility model for III-V compounds applicable in device simulation codes , 2000 .
[19] Chennupati Jagadish,et al. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.
[20] P. Krogstrup,et al. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.
[21] W. Barnes,et al. Surface plasmon subwavelength optics , 2003, Nature.
[22] William L. Barnes,et al. Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons , 2008 .
[23] Charles M. Lieber,et al. GaN nanowire lasers with low lasing thresholds , 2005 .
[24] Photocurrent and photoconductance properties of a GaAs nanowire , 2009, 0905.3659.
[25] J. Motohisa,et al. Characterizing the electron transport properties of a single 〈110〉 InAs nanowire , 2014 .
[26] L. M. Smith,et al. Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .
[27] P. Vogl,et al. nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.
[28] Emanuele Uccelli,et al. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.
[29] Charles M. Lieber,et al. Single-nanowire electrically driven lasers , 2003, Nature.
[30] P. Kužel,et al. Terahertz conductivity in nanoscaled systems: effective medium theory aspects , 2014 .
[31] K. Kavanagh,et al. p-type doping of GaAs nanowires using carbon , 2012 .
[32] V. Sundström,et al. Influence of plasmons on terahertz conductivity measurements , 2005 .
[33] A. Bertoni,et al. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. , 2013, Nano letters.
[34] Chennupati Jagadish,et al. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.
[35] W. Prost,et al. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth , 2009 .
[36] Ningfeng Huang,et al. Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.
[37] H. Němec,et al. Bulk-like transverse electron mobility in an array of heavily n -doped InP nanowires probed by terahertz spectroscopy , 2014 .
[38] K. West,et al. Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs , 1989 .
[39] Fang Qian,et al. Nanowire electronic and optoelectronic devices , 2006 .
[40] W. Prost,et al. n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires , 2010, Nanoscale research letters.
[41] M. Ramsteiner,et al. Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .
[42] Chennupati Jagadish,et al. Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. , 2012, Nano letters.
[43] G. Abstreiter,et al. Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .
[44] Chennupati Jagadish,et al. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. , 2014, Nano letters.
[45] Chennupati Jagadish,et al. Transient Terahertz Conductivity of GaAs Nanowires , 2007 .
[46] A. F. Morral,et al. Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .
[47] James Lloyd-Hughes,et al. A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .