TMS and the functional neuroanatomy of attention

Coordinated behaviour depends on selective attention: the ability to select a limited subset of stimuli for detailed analysis, while suppressing the stream of irrelevant information continuously received by our senses. Over the past three decades, converging evidence from neurophysiology, neuropsychology and cognitive neuroscience has suggested that selection modulates brain activity at sensory cortical levels ( [Desimone and Duncan, 1995], [Kastner and Ungerleider, 2000] and [Saalman et al., 2007]), and that potential sources of control are distributed across a frontoparietal network of brain regions ( [Corbetta and Shulman, 2002] and [Corbetta et al., 2008]). More recently, TMS studies have provided insights into the functional neuroanatomy of selective processes, revealing not only which areas of the healthy human brain are crucial for attention, but also when they are engaged during the timecourse of information processing.

[1]  Neil G. Muggleton,et al.  New light through old windows: Moving beyond the “virtual lesion” approach to transcranial magnetic stimulation , 2008, NeuroImage.

[2]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[3]  L. Merabet,et al.  Visual Phosphene Perception Modulated by Subthreshold Crossmodal Sensory Stimulation , 2007, The Journal of Neuroscience.

[4]  Nikolaus Weiskopf,et al.  Interhemispheric Effect of Parietal TMS on Somatosensory Response Confirmed Directly with Concurrent TMS–fMRI , 2008, The Journal of Neuroscience.

[5]  Jason B. Mattingley,et al.  Parietal disruption impairs reflexive spatial attention within and between sensory modalities , 2007, Neuropsychologia.

[6]  Jason B. Mattingley,et al.  Modality-Specific Control of Strategic Spatial Attention in Parietal Cortex , 2004, Neuron.

[7]  Sven Bestmann,et al.  Phosphene threshold as a function of contrast of external visual stimuli , 2004, Experimental Brain Research.

[8]  Neil G. Muggleton,et al.  Human frontal eye fields and target switching , 2010, Cortex.

[9]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[10]  Vincent Walsh,et al.  The perceptual and functional consequences of parietal top-down modulation on the visual cortex. , 2009, Cerebral cortex.

[11]  U. Mosimann,et al.  Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation , 2002, Experimental Brain Research.

[12]  T. Ro What can TMS tell us about visual awareness? , 2010, Cortex.

[13]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[14]  Stephen M. Kosslyn,et al.  Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects , 2002, Brain Research.

[15]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[16]  L. Merabet,et al.  Occipital Transcranial Magnetic Stimulation Has Opposing Effects on Visual and Auditory Stimulus Detection: Implications for Multisensory Interactions , 2007, The Journal of Neuroscience.

[17]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[18]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[19]  Martin Eimer,et al.  Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials. , 2002, Psychophysiology.

[20]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[21]  L. Cohen,et al.  Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation , 2000, Neurology.

[22]  M. Corbetta,et al.  Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. , 2007, Cerebral cortex.

[23]  J. Rothwell,et al.  Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits , 2004, The European journal of neuroscience.

[24]  J. Driver,et al.  Combining TMS and fMRI: From ‘virtual lesions’ to functional-network accounts of cognition , 2009, Cortex.

[25]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[26]  Mark Hallett,et al.  Two periods of processing in the (circum)striate visual cortex as revealed by transcranial magnetic stimulation , 1998, Neuropsychologia.

[27]  E. Macaluso,et al.  Supramodal Effects of Covert Spatial Orienting Triggered by Visual or Tactile Events , 2002, Journal of Cognitive Neuroscience.

[28]  Christopher D Chambers,et al.  Parietal Stimulation Decouples Spatial and Feature-Based Attention , 2008, The Journal of Neuroscience.

[29]  Juha Silvanto,et al.  Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. , 2006, Journal of neurophysiology.

[30]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[32]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[33]  Gregor Thut,et al.  Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. , 2005, Cerebral cortex.

[34]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[35]  Martin Eimer,et al.  Cortico-cortical interactions in spatial attention: A combined ERP/TMS study. , 2006, Journal of neurophysiology.

[36]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[37]  M Seyal,et al.  Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe , 1995, Annals of neurology.

[38]  T. Kammer Masking visual stimuli by transcranial magnetic stimulation , 2007, Psychological research.

[39]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[40]  Tony Ro,et al.  Feedback Contributions to Visual Awareness in Human Occipital Cortex , 2003, Current Biology.

[41]  Chris Rorden,et al.  Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues , 2005, Neuropsychologia.

[42]  Á. Pascual-Leone,et al.  Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. , 2008, Cerebral cortex.

[43]  Juha Silvanto,et al.  Time course of the state-dependent effect of transcranial magnetic stimulation in the TMS-adaptation paradigm , 2008, Neuroscience Letters.

[44]  R. Goebel,et al.  Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. , 2007, Cerebral cortex.

[45]  K D Singh,et al.  Transient and linearly graded deactivation of the human default-mode network by a visual detection task , 2008, NeuroImage.

[46]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[47]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[48]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[49]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[50]  O. Tzeng,et al.  Segregation of visual selection and saccades in human frontal eye fields. , 2008, Cerebral cortex.

[51]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[52]  A. Pascual-Leone,et al.  Induction of visual extinction by rapid‐rate transcranial magnetic stimulation of parietal lobe , 1994, Neurology.

[53]  Jacob Jolij,et al.  Figure–ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study , 2005, Neuroreport.

[54]  Na Na,et al.  Figure???ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study: , 2006 .

[55]  Tonia A. Rihs,et al.  Resting EEG alpha-power over posterior sites indexes baseline visual cortex excitability , 2008 .

[56]  Robin Laycock,et al.  Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception. , 2007, Journal of neurophysiology.

[57]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[58]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[59]  Colin Blakemore,et al.  Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation , 2007, Current Biology.

[60]  Neil G. Muggleton,et al.  Testing the validity of the TMS state-dependency approach: Targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+ , 2008, NeuroImage.

[61]  Jason B. Mattingley,et al.  Enhancement of visual selection during transient disruption of parietal cortex , 2006, Brain Research.

[62]  Juha Silvanto,et al.  Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. , 2008, Journal of neurophysiology.