Silicon-based materials as high capacity anodes for next generation lithium ion batteries

Abstract Silicon (Si)-based materials have the highest capacity among the investigated anode materials and have been recognized as one of the most promising materials for lithium-ion batteries. However, it is still a significant challenge to obtain good performance for practical applications due to the huge volume change during the electrochemical process. To date, the most successful strategy is to introduce other components into Si to form composite or alloy materials. In this review, the recent progress in Si-based materials utilized in lithium-ion batteries is reviewed in terms of composite systems, nano-structure designs, material synthesis methods, and electrochemical performances. The merits and disadvantages of different Si-based materials, the understanding of the mechanisms behind the performance enhancement as well as the challenges faced in Si anodes are also discussed. We are trying to present a full scope of the Si-based materials, and help understand and design future structures of Si anodes in lithium-ion batteries.

[1]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[2]  S. Komaba,et al.  Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries , 2011 .

[3]  Keith J Stevenson,et al.  Silicon nanowire fabric as a lithium ion battery electrode material. , 2011, Journal of the American Chemical Society.

[4]  Li-Jun Wan,et al.  Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. , 2012, Chemical communications.

[5]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[6]  Wei Shyy,et al.  Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles , 2008 .

[7]  Yong‐Mook Kang,et al.  Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery , 2010 .

[8]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[9]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[10]  Yu‐Guo Guo,et al.  Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. , 2013, Small.

[11]  W. Han,et al.  Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. , 2010, ACS applied materials & interfaces.

[12]  Chunsheng Wang,et al.  A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus‐Structured Current Collector , 2011 .

[13]  Zhigang Suo,et al.  Morphological evolution of Si nanowires upon lithiation: a first-principles multiscale model. , 2013, Nano letters.

[14]  T. Takamura,et al.  Li insertion/extraction reaction at a Si film evaporated on a Ni foil , 2003 .

[15]  Wanli Xu,et al.  Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells , 2010 .

[16]  T. Takamura,et al.  High capacity and long cycle life silicon anode for Li-ion battery , 2006 .

[17]  B. Korgel,et al.  Solution-grown germanium nanowire anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[18]  L. Bendersky,et al.  Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries , 2013 .

[19]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[20]  Yi Cui,et al.  Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires , 2011 .

[21]  S. Salley,et al.  A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance , 2013, Journal of Materials Science.

[22]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[23]  Hugh Geaney,et al.  Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling , 2013 .

[24]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[25]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[26]  Siew Yee Wong,et al.  Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. , 2013, Nanoscale.

[27]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[28]  J. L. Gómez‐Cámer,et al.  Anchoring Si nanoparticles to carbon nanofibers: an efficient procedure for improving Si performance in Li batteries , 2011 .

[29]  Prashanth H. Jampani,et al.  Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries , 2011 .

[30]  S. Jung,et al.  Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. , 2012, Nano letters.

[31]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[32]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[33]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[34]  P. Kohl,et al.  Silicon nanowire anode: Improved battery life with capacity-limited cycling , 2012 .

[35]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[36]  P. Notten,et al.  Honeycomb‐Structured Silicon: Remarkable Morphological Changes Induced by Electrochemical (De)Lithiation , 2011, Advanced materials.

[37]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[38]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[39]  E. Quiroga‐González,et al.  Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries , 2013, Materials.

[40]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[41]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[42]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[43]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[44]  J. Colin,et al.  Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy , 2013 .

[45]  S. Jung,et al.  Ab initio molecular dynamics simulation of lithiation-induced phase-transition of crystalline silicon , 2012 .

[46]  Hsing-Yu Tuan,et al.  Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. , 2012, ACS nano.

[47]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[48]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[49]  J. Dahn,et al.  Studies of Lithium-Exchanged Nafion as an Electrode Binder for Alloy Negatives in Lithium-Ion Batteries , 2008 .

[50]  J. Dahn,et al.  A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i , 2006 .

[51]  Alexandru Vlad,et al.  Roll up nanowire battery from silicon chips , 2012, Proceedings of the National Academy of Sciences.

[52]  M. Hasegawa,et al.  Study on CxN and CxS with disordered carbon structure as the anode materials for secondary lithium batteries , 1997 .

[53]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[54]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[55]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[56]  Y. Bando,et al.  Transmission electron microscope as an ultimate tool for nanomaterial property studies. , 2013, Microscopy.

[57]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[58]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[59]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[60]  Deren Yang,et al.  Cu–Si1−xGex core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[61]  P. Kofinas,et al.  Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[62]  Huixin Chen,et al.  Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries. , 2013, ACS applied materials & interfaces.

[63]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[64]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[65]  P. Kumta,et al.  Silicon and carbon based composite anodes for lithium ion batteries , 2006 .

[66]  S. Jung,et al.  Facet-dependent lithium intercalation into Si crystals: Si(100) vs. Si(111). , 2011, Physical chemistry chemical physics : PCCP.

[67]  V. Shenoy,et al.  The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. , 2011, Nano letters.

[68]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[69]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[70]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[71]  A. Romero,et al.  Lithium Adsorption on Graphene: From Isolated Adatoms to Metallic Sheets. , 2012, Journal of chemical theory and computation.

[72]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[73]  H. Lee,et al.  Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries , 2003 .

[74]  Hung-Chun Wu,et al.  Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells , 2009 .

[75]  Jianhui Zhang,et al.  Tunable Yellowish-Green to Green (Ca1-xSrx)LaGa3S6O:Eu2+ Phosphors for Potential LED Application , 2012 .

[76]  Yi Cui,et al.  The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation , 2012 .

[77]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[78]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[79]  X. Zhao,et al.  Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries , 2013 .

[80]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[81]  Liquan Chen,et al.  Ag-enhanced SEI formation on Si particles for lithium batteries , 2003 .

[82]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[83]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[84]  Jing Zhu,et al.  Silicon nanowire array films as advanced anode materials for lithium-ion batteries , 2010 .

[85]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[86]  Dunwei Wang,et al.  Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries. , 2010, Nano letters.

[87]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[88]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[89]  Jianwei Liu,et al.  A high-performance lithium-ion battery anode based on the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers , 2012 .

[90]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[91]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[92]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[93]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[94]  Seung M. Oh,et al.  Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries , 2013 .

[95]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[96]  Jin-Young Son,et al.  Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. , 2012, ChemSusChem.

[97]  P. Kumta,et al.  Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries , 2007 .

[98]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[99]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[100]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[101]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[102]  K. Striebel,et al.  Electrochemical Studies of Nanoncrystalline Mg2Si Thin Film Electrodes Prepared by Pulsed Laser Deposition , 2003 .

[103]  Han Jiang,et al.  Boundary effect on the plasticity and stress of lithiated silicon: First-principles calculations , 2012 .

[104]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[105]  Leigang Xue,et al.  Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes , 2013 .

[106]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[107]  Chunsheng Wang,et al.  Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes. , 2013, Small.

[108]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[109]  Dong‐Wan Kim,et al.  Self-supported multi-walled carbon nanotube-embedded silicon nanoparticle films for anodes of Li-ion batteries , 2013 .

[110]  J. Mosby,et al.  Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties , 2010 .

[111]  G. Hwang,et al.  A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys , 2011 .

[112]  Yao Li,et al.  Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries , 2013 .

[113]  J. Kuo,et al.  Adsorption and diffusion of Li on pristine and defective graphene. , 2012, ACS applied materials & interfaces.

[114]  S. Dou,et al.  Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries , 2006 .

[115]  Jing Zhu,et al.  Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes , 2009 .

[116]  Kondo‐François Aguey‐Zinsou,et al.  Preparation of Si-PPy-Ag composites and their electrochemical performance as anode for lithium-ion batteries , 2013, Ionics.

[117]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[118]  R. Holze,et al.  Effects of doped sulfur on electrochemical performance of carbon anode , 2002 .

[119]  Wonyoung Chang,et al.  Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries , 2010 .

[120]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[121]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[122]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[123]  Yi Cui,et al.  Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode , 2011 .

[124]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[125]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[126]  G. Simon,et al.  Improving Anodes for Lithium Ion Batteries , 2011 .

[127]  Jun Chen,et al.  Novel Nano-silicon / Polypyrrole Composites for Lithium Storage , 2007 .

[128]  Libao Chen,et al.  An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries , 2009 .

[129]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[130]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[131]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[132]  H. Nakanishi,et al.  Crystal and electronic structure of Li15Si4 , 2007 .

[133]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[134]  W. Li,et al.  Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition , 2013 .

[135]  L. Trahey,et al.  Metallic Copper Binders for Lithium-Ion Battery Silicon Electrodes , 2012 .

[136]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[137]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[138]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[139]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[140]  Yu‐Guo Guo,et al.  Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. , 2013, Chemistry, an Asian journal.

[141]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[142]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[143]  H. Ming,et al.  Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes , 2013 .

[144]  H. Usui,et al.  Applicability of ionic liquid electrolytes to LaSi2/Si composite thick-film anodes in Li-ion battery , 2013 .

[145]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[146]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[147]  Huajian Gao,et al.  Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries , 2011 .

[148]  Huixin Chen,et al.  Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries , 2011 .

[149]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[150]  Yi Cui,et al.  Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity , 2011 .

[151]  Jean-Pierre Pereira-Ramos,et al.  High‐Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li‐Ion Batteries , 2012, Advanced materials.

[152]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[153]  Yi Cui,et al.  Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings , 2012 .

[154]  Yi Cui,et al.  Improving the performance of lithium-sulfur batteries by conductive polymer coating. , 2011, ACS nano.

[155]  R. Ghodssi,et al.  Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates , 2010, Nanotechnology.

[156]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses , 2011 .

[157]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[158]  H. Oji,et al.  Graphite‐Silicon‐Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li‐Ion Batteries , 2011 .

[159]  Youn-Sik Lee,et al.  Preparation of polypyrrole-coated silicon nanoparticles , 2006 .

[160]  K. Nakai,et al.  Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles , 2011 .

[161]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[162]  Xinyue Zhao,et al.  Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode , 2012 .

[163]  M. Winter,et al.  NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries , 2011 .

[164]  Yunhong Zhou,et al.  PEDOT: Cathode active material with high specific capacity in novel electrolyte system , 2008 .

[165]  M. Ulldemolins,et al.  Memory effect highlighting in silicon anodes for high energy density lithium-ion batteries , 2013 .

[166]  E. Kaxiras,et al.  Reactive flow in silicon electrodes assisted by the insertion of lithium. , 2012, Nano letters.

[167]  Xuejie Huang,et al.  Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries , 2006 .

[168]  Xiaodong Chen,et al.  Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability , 2011 .

[169]  J. Dahn,et al.  Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder , 2008 .

[170]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[171]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[172]  Justin T. Harris,et al.  Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes. , 2013, ACS nano.

[173]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[174]  Ruoxu Lin,et al.  Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage , 2012 .

[175]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[176]  Q. Ramasse,et al.  Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system. , 2013, Nano letters.

[177]  V. Battaglia,et al.  Toward an ideal polymer binder design for high-capacity battery anodes. , 2013, Journal of the American Chemical Society.

[178]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[179]  Tomoyuki Yamada,et al.  Influence of Li diffusion distance on the negative electrode properties of Si thin flakes for Li secondary batteries , 2012 .

[180]  J. Chelikowsky,et al.  Controlling diffusion of lithium in silicon nanostructures. , 2010, Nano letters.

[181]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[182]  Xiangyang Zhou,et al.  Effect of polypyrrole on improving electrochemical performance of silicon based anode materials , 2012 .

[183]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[184]  Z. Ren,et al.  Diffusion of Li+ ion on graphene: A DFT study , 2011 .

[185]  Phl Peter Notten,et al.  On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces , 2009 .

[186]  Qiang Liu,et al.  Supercapacitor electrodes based on polyaniline–silicon nanoparticle composite , 2010 .

[187]  Jim Benson,et al.  Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. , 2012, ACS nano.

[188]  E. Kaxiras,et al.  Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study , 2012 .

[189]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[190]  Pengjian Zuo,et al.  Nano-silicon/polyaniline composite for lithium storage , 2010 .

[191]  Jun Liu,et al.  From chemistry to mechanics: bulk modulus evolution of Li-Si and Li-Sn alloys via the metallic electronegativity scale. , 2013, Physical chemistry chemical physics : PCCP.

[192]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[193]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[194]  Thomas A. Yersak,et al.  Effect of Compressive Stress on Electrochemical Performance of Silicon Anodes , 2013 .

[195]  M. Delville,et al.  Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries , 2006 .

[196]  Shun Mao,et al.  Silicon nanotube anode for lithium-ion batteries , 2013 .

[197]  Kurt Maute,et al.  Stress generation in silicon particles during lithium insertion , 2010 .

[198]  Yi Cui,et al.  Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars , 2012 .

[199]  H. Usui,et al.  TiO2/Si composites synthesized by sol-gel method and their improved electrode performance as Li-ion battery anodes , 2013 .

[200]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[201]  J. Cho,et al.  Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries , 2013 .

[202]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[203]  B. Tay,et al.  High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes. , 2013, Nanoscale.

[204]  Chunjoong Kim,et al.  Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries , 2006 .

[205]  Pengjian Zuo,et al.  Geometric and electronic studies of Li15Si4 for silicon anode , 2008 .

[206]  H. Groult,et al.  Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries , 2009 .

[207]  G. Hwang,et al.  Role of Interface in the Lithiation of Silicon-Graphene Composites: A First Principles Study , 2013 .

[208]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[209]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[210]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[211]  Yapei Wang,et al.  Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[212]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[213]  Justin T. Harris,et al.  Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries , 2012 .

[214]  Jong-Wan Park,et al.  Electrochemical properties of Si–Ge–Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries , 2011 .

[215]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[216]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[217]  Jaephil Cho,et al.  Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots , 2007 .

[218]  S. Komaba,et al.  High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries , 2012 .

[219]  Jaephil Cho,et al.  High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries , 2011 .

[220]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[221]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[222]  A. Heller,et al.  Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. , 2012, ACS nano.

[223]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[224]  Soojin Park,et al.  High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer , 2013 .

[225]  Mo-hua Yang,et al.  Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries , 2005 .

[226]  A. Balducci,et al.  Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries , 2003 .

[227]  Jong Min Kim,et al.  Highly Interconnected Si Nanowires for Improved Stability Li‐Ion Battery Anodes , 2011 .

[228]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .