Discrete-time predictive trajectory tracking control for nonholonomic mobile robots with obstacle avoidance

This article presents a tracking control approach with obstacle avoidance for a mobile robot. The control law is composed of two parts. The first is a discrete-time model predictive method-based trajectory tracking control law that is derived using an optimal quadratic algorithm. The second part is the obstacle avoidance strategies that switch according to two different designed obstacle avoidance regions. The controllability of the avoidance control law is analyzed. The simulation results validate the effectiveness of the proposed control law considering both trajectory tracking and obstacle avoidance.

[1]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[2]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[3]  Luiz Marcos Garcia Gonçalves,et al.  Nonholonomic mobile robots' trajectory tracking model predictive control: a survey , 2018, Robotica.

[4]  Anthony M. Bloch Stabilizability of nonholonomic control systems , 1992, Autom..

[5]  Igor Skrjanc,et al.  A comparison of continuous and discrete tracking-error model-based predictive control for mobile robots , 2017, Robotics Auton. Syst..

[6]  Demin Xu,et al.  Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints , 2017 .

[7]  Andreas Zell,et al.  Path Following with an Optimal Forward Velocity for a Mobile Robot , 2010 .

[8]  Zhong-Ping Jiang,et al.  Saturated stabilization and tracking of a nonholonomic mobile robot , 2001 .

[9]  Mingyue Cui,et al.  Adaptive Tracking and Obstacle Avoidance Control for Mobile Robots with Unknown Sliding , 2012 .

[10]  Zhong-Ping Jiang,et al.  Adaptive output feedback tracking control of a nonholonomic mobile robot , 2014, Autom..

[11]  Dusan M. Stipanovic,et al.  Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing , 2014, Int. J. Robotics Res..

[12]  Chih-Lyang Hwang,et al.  Trajectory Tracking and Obstacle Avoidance of Car-Like Mobile Robots in an Intelligent Space Using Mixed $H_{2}/H_{\infty}$ Decentralized Control , 2007, IEEE/ASME Transactions on Mechatronics.

[13]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[14]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[15]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control for Path Following Problems , 2012 .

[16]  F. Khaber,et al.  Optimal fuzzy tracking control with obstacles avoidance for a mobile robot based on Takagi-Sugeno fuzzy model , 2018, Trans. Inst. Meas. Control.

[17]  Lionel Lapierre,et al.  Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot , 2007, Int. J. Robotics Res..

[18]  Mitsuji Sampei,et al.  Arbitrary path tracking control of articulated vehicles using nonlinear control theory , 1995, IEEE Trans. Control. Syst. Technol..

[19]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[20]  Frank L. Lewis,et al.  Control of a nonholomic mobile robot: Backstepping kinematics into dynamics , 1997, J. Field Robotics.

[21]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[22]  Dongbing Gu,et al.  Receding horizon tracking control of wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[23]  Karl Worthmann,et al.  Model Predictive Control of Nonholonomic Mobile Robots Without Stabilizing Constraints and Costs , 2016, IEEE Transactions on Control Systems Technology.

[24]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[25]  Sung Jin Yoo Adaptive tracking and obstacle avoidance for a class of mobile robots in the presence of unknown skidding and slipping , 2011 .

[26]  Igor krjanc,et al.  A comparison of continuous and discrete tracking-error model-based predictive control for mobile robots , 2017 .

[27]  Jafar Keighobadi,et al.  Point stabilization of nonholonomic spherical mobile robot using nonlinear model predictive control , 2017, Robotics Auton. Syst..

[28]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[29]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[30]  Florent Lamiraux,et al.  Motion Planning and Obstacle Avoidance , 2016, Springer Handbook of Robotics, 2nd Ed..

[31]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[32]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .