Porous polymers: enabling solutions for energy applications.

A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress.

[1]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[2]  F. Švec,et al.  Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage , 2007 .

[3]  M. Thelakkat Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications , 2002 .

[4]  Arne Thomas,et al.  Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)‐Phosphoric Acid Adducts , 2008 .

[5]  C. Weder Hole control in microporous polymers. , 2008, Angewandte Chemie.

[6]  A. Kaltbeitzel,et al.  Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. , 2007, Physical chemistry chemical physics : PCCP.

[7]  S. Kaskel,et al.  Element-organic frameworks with high permanent porosity. , 2008, Chemical communications.

[8]  Josef Salbeck,et al.  White Light Emission from Organic LEDs Utilizing Spiro Compounds with High‐Temperature Stability , 2000 .

[9]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[10]  M. Antonietti,et al.  Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. , 2006, Small.

[11]  J. Roncali,et al.  From One‐ to Three‐Dimensional Organic Semiconductors: In Search of the Organic Silicon? , 2007 .

[12]  Liquan Chen,et al.  Monodispersed hard carbon spherules with uniform nanopores , 2001 .

[13]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[14]  Josef Salbeck,et al.  Spiro compounds for organic optoelectronics. , 2007, Chemical reviews.

[15]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[16]  Y. Imai,et al.  Polybenzimidazoles and polybenzoxazoles containing alicyclic structures , 1966 .

[17]  Jean M. J. Fréchet,et al.  High surface area nanoporous polymers for reversible hydrogen storage , 2006 .

[18]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[19]  V. Davankov,et al.  Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials , 2002 .

[20]  Markus Antonietti,et al.  Hard Templates for Soft Materials: Creating Nanostructured Organic Materials† , 2008 .

[21]  L. Luo,et al.  Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. , 2006, Chemical communications.

[22]  J. W. Kim,et al.  H2 sorption in HCl-treated polyaniline and polypyrrole , 2007 .

[23]  Patric Jannasch,et al.  Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state , 2008 .

[24]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[25]  Qiang Chen,et al.  Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. , 2008, Nature materials.

[26]  P. Bäuerle,et al.  Star-shaped perylene–oligothiophene–triphenylamine hybrid systems for photovoltaic applications , 2006 .

[27]  A. Cooper,et al.  Hydrogen storage using polymer-supported organometallic dihydrogen complexes: a mechanistic study. , 2007, Chemical communications.

[28]  Xiangyang Zhou,et al.  High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells , 2003 .

[29]  Markus Antonietti,et al.  From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. , 2008, Journal of the American Chemical Society.

[30]  Hiroyuki Uchida,et al.  Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells , 1998 .

[31]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. , 2005, Chemistry.

[32]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[33]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[34]  Giuseppe Zerbi,et al.  Volumetric measurement of hydrogen storage in HCl-treated polyaniline and polypyrrole , 2005 .

[35]  Markus Antonietti,et al.  Hydrothermal carbon from biomass : a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. , 2008 .

[36]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[37]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[38]  M. Antonietti,et al.  Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres , 2007 .

[39]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content , 2001 .

[40]  Walther Gustav Grot,et al.  Use of Nafion Perfluorosulfonic Acid Products as Separators in Electrolytic Cells , 1978 .

[41]  R. Mülhaupt,et al.  Arylphosphonic acid-functionalized polyelectrolytes as fuel cell membrane material , 2007 .

[42]  S. Kaliaguine,et al.  Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica , 2002 .

[43]  M. Antonietti,et al.  Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties , 2008 .

[44]  C. Nicolini,et al.  New nanomaterials for light weight lithium batteries. , 2006, Analytica chimica acta.

[45]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[46]  Rafael Luque,et al.  Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. , 2007, Chemistry.

[47]  K. Mauritz,et al.  Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions : Characterization of fundamental properties , 1998 .

[48]  K. Nakanishi,et al.  Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. , 1996, Analytical chemistry.

[49]  A. Eisenberg,et al.  Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers , 1977 .

[50]  H. Frauenrath,et al.  A general concept for the preparation of hierarchically structured pi-conjugated polymers. , 2008, Chemistry.

[51]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[52]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[53]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[54]  M. Antonietti,et al.  Aminated hydrophilic ordered mesoporous carbons , 2007 .

[55]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[56]  M. Antonietti,et al.  "Everything is surface": tunable polymer organic frameworks with ultrahigh dye sorption capacity. , 2008, Chemical communications.

[57]  W. Sigmund,et al.  Sol-gel based synthesis of complex oxide nanofibers , 2007 .

[58]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[59]  William R. Salaneck,et al.  Solid‐State Amplified Spontaneous Emission in Some Spiro‐Type Molecules: A New Concept for the Design of Solid‐State Lasing Molecules , 1998 .

[60]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[61]  Ashley J. Wilson,et al.  Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. , 2006, Angewandte Chemie.

[62]  Robert B. Moore,et al.  Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy , 1995 .

[63]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[64]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[65]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[66]  A. Cooper,et al.  Microporous Organic Polymers for Methane Storage , 2008 .

[67]  Klaus Müllen,et al.  Transparent carbon films as electrodes in organic solar cells. , 2008, Angewandte Chemie.

[68]  Prabhuram Joghee,et al.  Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells , 2004 .

[69]  Raul F. Lobo,et al.  Zeolite and molecular sieve synthesis , 1992 .

[70]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[71]  M. Antonietti,et al.  Replication and Coating of Silica Templates by Hydrothermal Carbonization , 2007 .

[72]  M. Antonietti,et al.  A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach , 2006 .

[73]  O. Bobleter,et al.  Hydrothermal degradation of polymers derived from plants , 1994 .

[74]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[75]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[76]  Andrew B. Bocarsly,et al.  Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes , 2002 .

[77]  Suzana P. Nunes,et al.  Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis , 1998 .

[78]  W. Sigmund,et al.  Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems , 2006 .

[79]  P. Budd,et al.  Microporous Polymers as Potential Hydrogen Storage Materials , 2007 .

[80]  H. Meier,et al.  Star‐Shaped Compounds Having 1,3,5‐Triazine Cores , 2003 .

[81]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[82]  Till von Graberg,et al.  Electrospun Silica—Polybenzimidazole Nanocomposite Fibers , 2008 .

[83]  D. Zhao,et al.  Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons† , 2008 .

[84]  C. Arean,et al.  Materials for hydrogen storage: current research trends and perspectives. , 2008, Chemical communications.

[85]  Markus Antonietti,et al.  Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? , 2007 .

[86]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[87]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[88]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[89]  P. Budd,et al.  The potential of organic polymer-based hydrogen storage materials. , 2007, Physical chemistry chemical physics : PCCP.

[90]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[91]  A. Morin,et al.  Advanced Mesostructured Hybrid Silica−Nafion Membranes for High-Performance PEM Fuel Cell , 2008 .

[92]  F. Diederich Advanced opto-electronics materials by fullerene and acetylene scaffolding , 2005 .

[93]  M. Antonietti,et al.  90 Years of Polymer Latexes and Heterophase Polymerization: More vital than ever , 2003 .

[94]  G. Cui,et al.  Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. , 2008, Chemical communications.

[95]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[96]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[97]  Soga,et al.  Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions , 2000, Analytical chemistry.

[98]  P. Budd Putting Order into Polymer Networks , 2007, Science.

[99]  F. Švec Preparation and HPLC applications of rigid macroporous organic polymer monoliths. , 2004, Journal of separation science.

[100]  A. Hirsch,et al.  Dicyanopolyynes: A Homologuous Series of End‐Capped Linear sp Carbon , 1997 .

[101]  A. Cooper,et al.  Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.

[102]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[103]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[104]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[105]  R. Marcilla,et al.  Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes , 2004 .

[106]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[107]  Y. Shirota Organic materials for electronic and optoelectronic devices , 2000 .

[108]  M. Antonietti,et al.  Template synthesis of porous organic polymers. , 2001 .

[109]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[110]  B. Baradie,et al.  Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells , 2000 .

[111]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[112]  Christopher D. Simpson,et al.  Synthesis of a giant 222 carbon graphite sheet. , 2002, Chemistry.

[113]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[114]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[115]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[116]  G. Wegner,et al.  Synthesis, Microstructure, and Acidity of Poly(vinylphosphonic acid) , 2006 .

[117]  Markus Antonietti,et al.  A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization , 2007 .

[118]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[119]  G. Wegner,et al.  Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole , 2003 .

[120]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[121]  W. T. Grubb,et al.  Batteries with Solid Ion‐Exchange Membrane Electrolytes II . Low‐Temperature Hydrogen‐Oxygen Fuel Cells , 1960 .

[122]  A. Elschner,et al.  Star‐Shaped Oligothiophenes for Solution‐Processible Organic Field‐Effect Transistors , 2003 .

[123]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[124]  Neil L. Campbell,et al.  Conjugated microporous poly(phenylene butadiynylene)s. , 2008, Chemical communications.

[125]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[126]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[127]  M. Antonietti,et al.  Facile One-Pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties , 2008 .

[128]  A. Stein Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress , 2003 .

[129]  A. Cooper,et al.  Mesoporous Poly(phenylenevinylene) Networks , 2008 .

[130]  K. Kreuer,et al.  Poly(1,3‐phenylene‐5‐phosphonic Acid), a Fully Aromatic Polyelectrolyte with High Ion Exchange Capacity , 2007 .

[131]  A. Pines,et al.  129Xe NMR studies of hyper-cross-linked polyarylcarbinols : rigid versus flexible structures , 1995 .

[132]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[133]  V. Davankov,et al.  Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks , 1990 .

[134]  Arne Thomas,et al.  Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. , 2008, Journal of the American Chemical Society.

[135]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[136]  Samuel J. Mugavero,et al.  Tailoring Microporosity in Covalent Organic Frameworks , 2008, Advanced materials.

[137]  Ullrich Mitschke,et al.  The electroluminescence of organic materials , 2000 .